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0.0.1 Linearized pre-buckling analysis

A few notes.
According to the linearized pre-buckling analysis, the structure is

considered in an oxymoronic configuration which is both pre-stressed
and undeformed.

The σ 0 pre-stress condition is evaluated through a linear prelim-
inary analysis of the structure subject to a set of applied loads, and
potentially inhomogeneous constraints; both the preload and the asso-
ciate stress field may be scaled by a common λ amplification factor,
and the structure behaviour is parametrically examined with varying
λ.

The displacement and rotation fields associated this preliminary
analysis are not however retained in the subsequent step, in contrast
to the pre-stress ; such looseness is commonly justified based on the
assumed smallness of such deflections.

For each element of the structure, the stiffness matrix is derived
by a) taking into account the contribution of the σ 0 pre-stress to the
internal virtual work, and b) by employing a second order, nonlinear,
large rotation formulation for the B matrix that derives the strain ten-
sor from nodal Degree of Freedom (DOF)s. Details are here omitted1.

The resulting element stiffness matrix is obtained as the sum of
two distinct contributions; the first contribution K m

ej is named mate-
rial stiffness matrix and, in the absence of large element reorientation
in space, it coincides with the customary definition of element stiffness
matrix. The second contribution K g

ej is named geometric stiffness ma-
trix and it embodies the corrective terms due to the interaction of the
pre-stress with the rotations; such term is invariant with the material
properties, and it scales with the pre-stress itself, i.e. with the λ ampli-
fication factor. This second contribution embodies the stress stiffening
and stress softening effects.

Both the two terms are obtained by relying on the initial coor-
dinates of the element nodes, thus effectively neglecting the preload-
induced deflections.

The elemental material and geometric stiffness matrix are then as-
sembled into their global counterparts, and contraints are applied that

1see e.g. reference [1]
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are consistent2 with the ones employed in deriving the pre-stress.
The following relation is thus obtained in the neighborhood of a

λ-scaled, pre-stressed configuration(
K m + λK g

)
δ d = δ F (1)

that relates a small variation in the externally applied actions δ F with
the required adjustments in the structure configuration δ d for the
sake of equilibrium; the cumulative K m +λK g term is named tangent
stiffness matrix upon its role in locally orienting the equilibrium path.

Of a particular interest is the case of a nonzero variation in config-
uration for which equilibrium is preserved in the absence of external
load variation; such condition is a prerequisite for a bifurcation of the
equilibrium path. We have in particular an homogenous system of
equations (

K m + λi K g
)
δ d̂ i = 0 (2)

whose nontrivial solutions are in form of generalized3 eigenpairs (λi, δ d̂ i),
with λi values that zero the determinant of the tangent stiffness matrix,
and are hence named critical pre-stress (or preload, or load) amplifi-
cation factor.

In correspondence of critical λi values, the elastic reactions are
unable to restrain an arbitrary scaled δ d̂ i perturbation of the structure
configuration, and the related variation in stress/strain values, thus
obtaining a indifferent equilibrium condition.

XXX

2not stricty equal in theory, since some variations are allowed with respect in
particular positioning and symmetry constraints. FE packages may however limit
such theoretically allowed redefinition of constraints.

3an equivalent, standard (
A − ηi I

)
v i = 0

eigenproblem may be defined with

A =
[

K m
]−1

K g, λi = −1/ηi, v i = δ d̂ i.
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Figure 1: Rationalization of the minimum critical amplification factor
in modulus vs. minimum critical positivi amplification factor problem.
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