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0.1 Joining elements into structures.

0.1.1 Displacement and rotation field continuity

Displacement and rotation fields are continuous at the isoparametric
quadrilateral inter-element interfaces; they are in fact continuous at
nodes since the associated nodal Degree of Freedom (DOF)s are shared
by adjacent elements, and the field interpolations that occur within
each quadrilateral domain a) they both reduce to the same linear rela-
tion along the shared edge, and b) they are performed in the absence
of any contributions related to unshared nodes or DOFs.

0.1.2 Expressing the element stiffness matrix in terms
of global DOFs

As seen in Par. ??, the stiffness matrix of each j-th element defines
the elastic relation between the associated generalized forces and dis-
placements, i.e.

G ej = K ej d ej (1)

where the DOFs definition is local with respect to the element under
scrutiny.

In order to investigate the mutual interaction between elements in
a structure, a common set of global DOFs is required; in particular,
generalized displacement DOFs are defined at each l-th global node,
i.e., for nodes interacting with the shell element formulation under
scrutiny,

d gl =



ugl

vgl

wgl

θgl

ϕgl

ψgl

 . (2)

The global reference system OXY Z is typically employed in project-
ing nodal vector components. However, each l-th global node may
be supplied with a specific reference system, whose unit vectors are
ı̂gl, ̂gl, k̂gl, thus permitting the employment of non uniformly aligned
(e.g. cylindrical) global reference systems.
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Those nodal degrees of freedom may be collected in a global DOFs
vector

d>g =
[

d>g1 d>g2 . . . d>gl . . . d>gn
]

(3)

that parametrically defines any deformed configuration of the structure.
Analogously, a global, external (generalized1) forces vector may be

defined, that assumes the form

F>g =
[

F>g1 F>g2 . . . F>gl . . . F>gn
]

; (4)

since external (single DOF or “to ground”) and internal (multi DOF)
kinematic constraints are expected to be applied to the structure DOFs,
the following vector of reaction forces

R>g =
[

R>g1 R>g2 . . . R>gl . . . R>gn
]

(5)

is introduced. Many FE softwares – and MSC.Marc in particular – treat
external and internal constraints separately, thus leading to two set of
constraint actions, namely the (strictly named) reaction forces, and
the tying forces, respectively; for the sake of simplicity, the constraint
treatise is unified in the present contribution.

The simple four element, roof-like structure of Fig. 1 is employed in
the following to discuss the procedure that derives the elastic response
characterization for the structure from its elemental counterparts.

The structure comprises nine nodes, whose location in space is de-
fined according to a global reference system OXY Z, see Table 1.

The structure is composed by four, identical, four noded isopara-
metric shell elements, whose formulation is described in the preceding
section ??.

A grayscale, normalized representation of the element stiffness ma-
trix is shown in Figure 2, where the white to black colormap spans
from zero to the maximum in absolute value term.

The mapping between local, element based node numbering and
the global node numbering is reported in the connectivity Table 2.

Such i) local to global node numbering mapping, together with
ii) the change in reference system mentioned above, defines a set of

1Unless otherwise specified, the displacement and force terms refer to the DOFs,
and the suitable actions that perform work with their variation, respectively. They
are in fact generalized forces and displacements.
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ı̂
̂

ı̂
k̂

̂

g1

g3
g2

g5

g4

g6

g9

g8

g7

θe1n1 ı̂e1

we1n2 k̂e1

e1

e3

e2

e4

we1n2 k̂e1

θe1n1 ı̂e1

= ug2 ı̂g2 + vg2 ̂g2 + wg2 k̂g2

= θg1 ı̂g1 + ϕg1 ̂g1 + ψg1 k̂g1

k̂ı̂g∗
k̂g∗

̂g∗
ı̂

k̂
̂

ı̂
̂

k̂

Figure 1: A simple four-element, roof-like structure employed in dis-
cussing the assembly procedures. The elements are square, thick plates
whose angle with respect to the global XY plane is 30◦

node X Y Z

g1 −lc 0 +l
g2 0 +ls +l
g3 +lc 0 +l
g4 −lc 0 0
g5 0 +ls 0
g6 +lc 0 0
g7 −lc 0 −l
g8 0 +ls −l
g9 +lc 0 −l

Table 1: Nodal coordinates for the roof-like structure of Figure 1. l is
the element side length, c = cos 30◦ and s = sin 30◦
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Uni

Vni

Wni

Θni

Φni

Ψni

uni vni wni θni ϕni ψni

i = 1 . . . 4

Figure 2: A representation of the stiffness matrix terms for each el-
ement in the example structure; the term magnitude is represented
through a linear grayscale, spanning from zero (white) to the peak
value (black).

n1 n2 n3 n4

e1 g1 g2 g5 g4
e2 g2 g3 g6 g5
e3 g4 g5 g8 g7
e4 g5 g6 g9 g8

Table 2: Element connectivity for the roof-like structure of Figure 1.
As an example, the node described by the local numbering e3n2 is
mapped to the global node g5.
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ue1ni

ve1ni

we1ni

θe1ni

ϕe1ni

ψe1ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue2ni

ve2ni

we2ni

θe2ni

ϕe2ni

ψe2ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue3ni

ve3ni

we3ni

θe3ni

ϕe3ni

ψe3ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

ue4ni

ve4ni

we4ni

θe4ni

ϕe4ni

ψe4ni

dg2dg1 dg3 dg4 dg5 dg6 dg7 dg8 dg9

Pe1

Pe2

Pe3

Pe4

Figure 3: A grayscale representation of the terms of the four P ej

mapping matrices associated the elements of Fig. 1. The colormap
spans from white (zero) to black (one); the lighter and the darker
grey colors represent terms that equate in modulus sin 30◦ and cos 30◦,
respectively. 5
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elemental DOF mapping matrices, P ej , one each j-th element. Such
matrices are defined as follows: the i-th row the P ej matrix contains
the coefficients of the linear combination of global DOFs that equates
the i local DOF of the j-th element; an example is proposed in the
following to illustrate such relation.

With reference to the structure of Figure 1, we1n2 and θe1n1 re-
spectively represent the 10th and the 13th local degrees of freedom of
element 1.

Their global representation involves a subset of the g2 and g1 global
nodes DOFs, respectively, namely

we1n2 = 〈k̂e1, ı̂g2〉ug2 + 〈k̂e1, ̂g2〉vg2 + 〈k̂e1, k̂g2〉wg2 (6)

θe1n1 = 〈̂ıe1, ı̂g1〉θg1 + 〈̂ıe1, ̂g1〉φg1 + 〈̂ıe1, k̂g1〉ψg1 (7)

where ı̂e1,̂e1, k̂e1 are the orientation vectors of the element 1 local
reference system, ı̂g1,̂g1,k̂g1 and ı̂g2,̂g2,k̂g2 are the orientation vectors
of the global nodes 1 and 2 reference systems, and 〈·, ·〉 represents
their mutual scalar product, or, equivalently, the cosinus of the angle
between two unit vectors.

The 10th and the 13th row of the P e1 mapping matrix are defined
based on Eqs.6 and 7, respectively, and they are null except for the
elements [

P e1

]
10,7

= 〈k̂e1, ı̂g2〉
[

P e1

]
13,4

= 〈̂ıe1, ı̂g1〉[
P e1

]
10,8

= 〈k̂e1, ̂g2〉
[

P e1

]
13,5

= 〈̂ıe1, ̂g1〉[
P e1

]
10,9

= 〈k̂e1, k̂g2〉
[

P e1

]
13,6

= 〈̂ıe1, k̂g1〉,

being ug2,vg2,wg2,θg1,φg1 and ψg1 the 7th, 8th, 9th, 4th, 5th and 6th
global degrees of freedom according to their position in d g.

Figure 3 presents a grayscale representation of the four P ej matri-
ces; please note the extremely sparse nature of those matrices, whose
number of nonzero terms scales with the single element DOF cardinal-
ity, whereas the total number of terms scale with the whole structure
DOF cardinality.

The rows of the rectangular P ej mapping matrix are mutually or-
thonormal; the mapping matrix is orthogonal in the sense of the Moore-
Penrose pseudoinverse, since its transpose and its pseudoinverse coin-
cide.
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g9

e3n3 ≡ g8

e3
ı̂g∗

k̂g∗

̂g∗

ı̂
k̂

̂

Vg8←e3 ̂g8

Vg8←e3 ̂g8 = Ue3n3 ı̂e3 + Ve3n3 ̂e3 +We3n3 k̂e3

e4
ı̂

̂

k̂

Vg8←e4 ̂g8

Vg8←e4 ̂g8 = Ue4n4 ı̂e4 + Ve4n4 ̂e4 +We4n4 k̂e4

g8 ≡ e4n4

Vg8 = Vg8←e3 + Vg8←e4

We4n4 k̂e4

Ue4n4 ı̂e4

̂g8 ⊥ ̂e4

Figure 4: Accumulation of elemental nodal actions at global nodes.

The elemental mapping P ej matrices constitute an artifice that
plays a double role in the local to global DOF mapping; if on one side
the j-th element DOFs may be derived from their global counterpart
as

d ej = P ej d g, ∀j (8)

on the other, the nodal actions required to oppose the elastic reactions
at each j-th element, as evaluated as in Eq. 1 according to the local
DOF system, may be collected at global nodes.

Such collection is illustrated in Figure 4 for the second DOF of the
global node g8, and in particular the force component Vg8, namely the
44-th component of G g; such a force component collects the contribu-
tions aligned with the ̂g8 unit vector from element 3, local node 3, and
element 4, local node 4, named Vg8←e3 and Vg8←e4, respectively.

Figure 4 equations relate the nodal force components expressed
with respect to the element reference systems with the global force
component under scrutiny; in particular we have

Vg8←e3 = Ue3n3〈̂ıe3, ̂g8〉+ Ve3n3〈̂e3, ̂g8〉+We3n3〈k̂e3, ̂g8〉 (9)

Vg8←e4 = Ue4n4〈̂ıe4, ̂g8〉+ Ve4n4〈̂e4, ̂g8〉+We4n4〈k̂e4, ̂g8〉. (10)

If we want to collect the contribution along the global DOFs of the
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forces collected on element 4 in the algebraic relation

G g←e4 = P ′e4 G e4 (11)

the 44-th row of the P ′ - whose row and column cardinality equates
that of the global and the elemental DOF, respectively - may be com-
piled based on 10; in particular, its nonzero terms are[

P ′e4

]
44,4

= 〈̂g8, ı̂e4〉
[

P ′e4

]
44,12

= 〈̂g8, k̂e4〉[
P ′e4

]
44,8

= 〈̂g8, ̂e4〉

being 4,8,12 the index locations of Ue4n4, Ve4n4,We4n4 within G e4.
By repeating the procedure for each global DOF, and for each el-

ement, it is found that the P ′ej matrices equate the transpose of the
P ej matrices associated to the same element, and hence Eq. 10 may
be recast for each element as

G g←ej = P>ej G ej , ∀j (12)

thus obtaining a transformation from element DOFs to their con-
tributes to global counterparts.

The role of P>ej in such a local-to-global mapping Eq. pairs the
role of P ej in the global-to-local relation expressed in Eq. . A strict
inverse relation may not be defined due to the different cardinality of
the two DOF sets, and P ej lacks of a proper inverse, being in fact a
rectangular matrix.

However, due to the mutually orthonormal nature of the P ej matrix
columns, such a matrix may be defined orthonormal in the sense of the
Moore-Penrose pseudoinverse; the P>ej matrixes that, for each element,
control the local-to-global mapping are the pseudoinverses of the P ej

matrixes that regulate the global-to-local mapping.
Based on 1, 8 and 12, the contribution of the j-th element to the

elastic response of the structure may finally be described as the vector
of global force components

G g←ej = P>ej K ej P ej d g; (13)

that have to be applied at the structure DOFs in order to equilibrate
the elastic reactions that arise at the nodes of the j-th element, if a

8
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deformed configuration is prescribed for the latter according to the d g

global displacement mode.
By accumulating the contribution of the various elements in a struc-

ture, the overall relation is obtained

G g =
∑
j

G g←ej =

∑
j

P>ej K ej P ej

 d g = K g d g, (14)

that defines the K g global stiffness matrix as an assembly of the ele-
mental contributions. The contribute accumulation at each summatory
step is graphically represented in Fig. 5, in the case of the example
structure of Fig. 1.

The global stiffness matrix is symmetric, and it shows nonzero
terms at cells whose row and column indices are associate to two DOFs
that are bridged by a direct elastic link – i.e., an element exists, that
insists on both the nodes those DOFs pertain; since only a limited
number of elements insist on each given node, the matrix is sparse, as
shown in Fig. 5d.

An favourable numbering of the global nodes may be searched for,
such that the nonzero terms are clustered within a (possibly) nar-
row band around the diagonal; the resulting stiffness matrix is hence
banded, condition this that reduces both the storage memory require-
ments, and the computational effort in applying the various algebraic
operators to the matrix.

The stiffness matrix (half-)bandwidth may be predicted by evalu-
ating the bandwidth required for storing each element contribution

bej = (imax − imin + 1) l, (15)

and retaining the
b = max

ej
bej (16)

peak value; in the formula 15, l is the number of DOF per element
node, whereas imax and imax are the extremal integer labels associated
to the element nodes, according to the global numbering.

9
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dg1 dg2 dg3 dg4 dg5 dg6 dg7 dg8 dg9

F g1

F g2

F g3

F g4

F g5

F g6

F g7

F g8

F g9

bsymm

(a) (b)

(c) (d)

Figure 5: Graphical representation of the assembly steps for the stiff-
ness matrix of the Fig. 1 structure. The zero-initialized form for the
matrix that precedes the (a) step is omitted.
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0.1.3 External forces assembly

The element vector forces are accumulated to derive global external
forces vector F g, as in

F g =
∑
j

P>ej F ej ; (17)

the transposed P>ej mapping matrix is employed to translate the ac-
tions on the local DOFs to their global counterpart.

11
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0.2 Constraints.

0.2.1 A pedagogical example.

Figure 6 represents a simple, pedagogical example of a three d.o.f.
elastic system subject to a set of two kinematic constraints. The first,
I, embodies a typical multi d.o.f. constraint2, namely a 3:1 leverage
between the vertical displacements d3 and d1 The second, II, consists
in a single d.o.f., inhomogeneous constraint that imposes a fixed value
to the d2 vertical displacement.

Both the kinematic constraint may be cast in the same algebraic
form ∑

i

αji d i = α>j d = ∆j (18)

where j = I, II and i = 1 . . . 3 the indexes span through the constraints
and the model d.o.f.s, respectively, and the α j equation coefficient
vectors and inhomogeneous terms are

α>I =
[
3 0 1

]
∆I = 0

α>II =
[
0 1 0

]
∆II = 0.2

In the absence of constraints, viable system configurations span
the whole R3 space of Fig. 7 (a); viable configurations with respect
to the first constraint alone span the hyper-plane/subspace3 I, whereas
the subspace II collects the feasible configurations with respect to the
second constraint.

It is relevant to underline that the feasible configuration hyper-
planes I and II are normal to the associated coefficient vectors α I and
α II, respectively.

The I ∩ II intersection subspace collects the configurations that
satisfies both the constraints; such subspace is orthogonal to both α I

and α II.
If the constraints are assumed as ideal4, the exerted reactions are

orthogonal to the allowed displacements; reaction forces are confined

2usually, and rather improperly, named multipoint constraint (MPC)
3The subspace of the feasible configurations with respect to a single, scalar lin-

ear equation is an hyperplane in the configuration space; due to the limited d.o.f.
set cardinality, Figure 7 (a) represents a 2d plane within a 3d space. The hyper-
nomenclature is preserved to

4or, namely, frictionless

12
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d1

d2
d3

1:3

0.2 mm

0 d1 + 1 d2 + 0 d3 = 0.2
3 d1 − 0 d2 + 1 d3 = 0I:

II:(a)

(b)

Figure 6: A pedagogical elastic three d.o.f. system, (a), subject to a
few kinematic constraints (b).

on a subspace of the reaction space that corresponds to5 the orthogonal
complement of the feasible subspace of the configuration space.

By moving on the constraint reaction space shown in 7 (b), the
reaction forces associated to constraint I and II are thus proportional
to the α I and α II vectors, respectively; the cumulative constraint
reactions lie on the linear span of those two vectors, namely L (αI, αII).

With reference to some concepts anticipated from the next para-
graph, we may set d1 as the only retained6 DOF, thus leading to Λ
and ∆ terms equal to, respectively,

Λ =

 1
0
−3

 ∆ =

 0
0.2
0

 .
0.2.2 General formulation

A set of m constraints

dj =
∑
di∈ d R

λjidi + ∆j (19)

5i.e. the two subspaces share, with adjusted physical dimensions, the same gen-
erator vectors.

6alternatively, d3 may be chosen for such a role.
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d1

d2

d3
R1

R2

R3

II

I

I ∩ II

(a) configuration space (b) reaction space

‖ αI

L (αI, αII), ⊥ (I ∩ II)
⊥ II, ‖ αII

⊥ I, ‖ αI

⊥ αI

⊥ αII

‖ I ∩ II

I ∩ II

‖ αII

Figure 7: Allowed system configurations and constraint reactions for
the pedagogical example of Fig. 6. The allowed displacement sets
are easily derived as the homogenous counterpart of (a), and are not
represented here.

is defined that states the linear7 dependence of a partition subset of the
d DOFs vector terms, the tied ones, on the remaining di terms, that
retain their independent nature. The independent terms are collected
within a reduced cardinality DOF vector d R, and they are referred to
as the retained ones8.

Also the inhomogeneous ∆j term is provided for in Eqn. 19 to
accomodate constraints of the nonzero fixed displacement kind.

The following algebraic relation may then be derived, that defines
the initial, unabridged d DOF vector terms based on the subset that
produces the retained DOF vector d R

d = Λ d R + ∆ ; (20)

the ∆ n-sized column vector collects the various ∆j terms of the 19
constraint equations, and the n rows, n−m columns Λ matrix collects

• the identity relations between corresponding retained DOFs terms
that appear in both d and d R, and

7more precisely, linear variation dependence, due to the presence of the inhomo-
geneous term.

8 Here, the definition of the overall, retained, and tied DOF vectors, ( d , d R,
d T = d \ d R, respectively) is overloaded with both its DOF and DOF index
(ordered) set counterparts, thus allowing e.g. the di ∈ d R notation in a vector
element context, and the i ∈ d R notation in an integer index context.

14
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=

dl 1

dRh

0

dk 0

+

0

d̄k

di ∆jλji

retained dof.

tied dof.

tied dof.

dk = d̄k
fixed disp.

general

dl = dRh

Λd = dR + ∆

h

l

k

i

Figure 8: Graphical representation for the Λ matrix in Eq. 20; repre-
sentative matrix rows are illustrated for a retained DOF, and for two
tied DOFs, namely a fixed displacement subcase, and the general case.

• the λji coefficients that define the linear variation dependence of
the tied dj DOF on the retained di DOF.

Figure 8 illustrates a few representatives of the rows whose assembly
defines the Λ . In the case of a retained global DOF, dl, which finds

a counterpart in the h-th element of d R, = dR
h , the associated row

contains a single unit term at of the intersection of the l-th row with
the h-th column, being zero elsewhere. In the case of a tied DOF of the
plain fixed displacement kind (single DOF constraint), the associated
row in Λ is null, and the associated inhomogeneous term in ∆ equates
the imposed value for the displacement. In the case of a tied DOF of
the general kind, see Eq. 20, the associated row in the Λ matrix is
build upon the λji linear relation coefficients.

It is finally worth to mention that the virtual displacements in the
neighborhood of a feasible constrained configuration are restricted to
the linear combinations of the Λ matrix columns Λ j , i.e.

δ d = Λ δ dR = Λ 1 δ dR
1 + Λ 2 δ dR

2 + . . . (21)

with arbitrary virtual displacement values δ dR
j for the retained DOF

15
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alone.
The ideal constraint hypothesis requires the reaction force vector R

to be orthogonal to a generic virtual displacement, and such condition
hods if and only if R is orthogonal to each the Λ matrix columns, i.e.

〈Λ j , R 〉 = 0 ∀j, (22)

or, equivalently,
Λ>R = 0 . (23)

0.3 The system of constrained equilibrium equa-
tions, and its solution.

The nodal DOF equilibrium equations derived by pairing i) the K d
external forces required to keep the structure in a d deformed config-
uration, see Eq. 14, ii) the actual external forces F which are applied
to the elements as distributed loads, see Eq. 17, or directly at nodes in
form of concentrated loads, and iii) the reaction forces R may be cast
as

K d = F + R . (24)

Here, d and R are both unknown.
If constraints are applied, we have

K
(

Λ d R + ∆
)

= F + R (25)

and
K Λ d R =

(
F − K ∆

)
+ R , (26)

where the inhomogeneous part of the constraint equations is de facto
assimilated to a further contribution to the external loads.

By projecting the equations on the subspace of allowed configura-
tions

Λ>K Λ︸ ︷︷ ︸
K R

d R = Λ>
(

F − K ∆
)︸ ︷︷ ︸

F R

+ Λ>R︸ ︷︷ ︸
=0

, (27)

the contribution of the unknown reaction forces, that are normal to
such a subspace – see Eq. 23, vanishes.

16
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The linear system of constrained nodal DOF equilibrium equations
is then set as

K R d R = F R (28)

and it may be solved for the retained DOF vector d R.
Once the solution vector d ∗R is found in terms of displacements

at retained DOFs, the overall displacement vector and the unknown
reaction forces may be derived as

d ∗ = Λ d ∗R + ∆ ; (29)

and
R ∗ = K

(
Λ d ∗R + ∆

)
− F . (30)

Then, for each j-th element, the local DOFs vector may be derived
based on

d ∗ej = P ej d ∗, (31)

and consequently its in-plane

ε =
(

B 0
ej(ξ, η) + B 1

ej(ξ, η)z
)

d ∗ej (32)

and out-of-plane strain fields

γ̄ = B γ̄
ej(ξ, η) d ∗ej , (33)

from which the stress components may be easily derived.

0.3.1 Rigid body link RBE2

A master (or retained, control, independent, etc.) C node is consid-
ered, whose coordinates are defined as xC , yC , zC in a (typically) global
reference system, along with a set of n Pi nodes whose coordinates are
xi, yi, zi.

A kinematic link is to be established such that the DOFs – or a
subset of them – associated to the Pi nodes follow the rototranslations
of the C control according to the rigid body motion laws.
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In the case of a fully constrained Pi node we have

ui
vi
wi
θi
φi
ψi

 =



1 0 0 0 +(zi − zC) −(yi − yC)
0 1 0 −(zi − zC) 0 +(xi − xC)
0 0 1 +(yi − yC) −(xi − xC) 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

L i

·



uC
vC
wC
θC
φC
ψC


(34)

where u, v, w (θ, φ, ψ) are the translation (rotation) vector components
with respect to the x, y, z cartesian reference system. A subset of the
above DOF dependency relations may be cast to obtain a partial con-
straining of the Pi node; a free relative motion of such node with respect
to the rigid body is allowed at the unconstrained DOFs.

External actions that are applied to tied Pi DOFs are reduced to
the master node in form of a statically equivalent counterpart; the
contributions deriving from each Pi node are finally accumulated.

18
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