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0.1 Basic theory of plates
P displacement components as a function of the Q reference point mo-
tion.

𝑢𝑃 = 𝑢 + 𝑧 (1 + ̌𝜖𝑧) sin 𝜑 (1)
𝑣𝑃 = 𝑣 − 𝑧 (1 + ̌𝜖𝑧) sin 𝜃 (2)
𝑤𝑃 = 𝑤 + 𝑧 ((1 + ̌𝜖𝑧) cos(𝜑) cos(𝜃) − 1) (3)

̌𝜖(𝑧) = 1
𝑧 ∫

𝑧

0
𝜖𝑧𝑑𝜍 (4)

= 1
𝑧 ∫

𝑧

0
− 𝜈

1 − 𝜈 (𝜖𝑥 + 𝜖𝑦) 𝑑𝜍 (5)

P displacement components as a function of the Q reference point
motion, linarized with respect to the small rotations and small strain
hypotheses.

𝑢𝑃 = 𝑢 + 𝑧𝜑 (6)
𝑣𝑃 = 𝑣 − 𝑧𝜃 (7)
𝑤𝑃 = 𝑤 (8)

Relation between the normal displacement 𝑥, 𝑦 gradient (i.e. the
deformed plate slope), the rotations and the out-of-plane, interlaminar,
averaged shear strain components.

𝜕𝑤
𝜕𝑥 = ̄𝛾𝑧𝑥 − 𝜑 (9)

𝜕𝑤
𝜕𝑦 = ̄𝛾𝑦𝑧 + 𝜃 (10)

Strains at point P.
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Figure 1: Relevant dimensions for describing the deformable plate kine-
matics.
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𝜖𝑥 = 𝜕𝑢𝑃
𝜕𝑥 = 𝜕𝑢

𝜕𝑥 + 𝑧 𝜕𝜑
𝜕𝑥 (11)

𝜖𝑦 = 𝜕𝑣𝑃
𝜕𝑦 = 𝜕𝑣

𝜕𝑦 − 𝑧 𝜕𝜃
𝜕𝑦 (12)

𝛾𝑥𝑦 = 𝜕𝑢𝑃
𝜕𝑦 + 𝜕𝑣𝑃

𝜕𝑥 (13)

= (𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥) + 𝑧 (+𝜕𝜑
𝜕𝑦 − 𝜕𝜃

𝜕𝑥) (14)

Generalized plate strains: membrane strains.

̄ϵ = ⎛⎜⎜
⎝

𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

̄𝜖𝑥
̄𝜖𝑦

̄𝛾𝑥𝑦

⎞⎟
⎠

(15)

Generalized plate strains: curvatures.

κ = ⎛⎜⎜
⎝

+𝜕𝜑
𝜕𝑥

− 𝜕𝜃
𝜕𝑦

+𝜕𝜑
𝜕𝑦 − 𝜕𝜃

𝜕𝑥

⎞⎟⎟
⎠

= ⎛⎜
⎝

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

⎞⎟
⎠

(16)

Compact form for the strain components at P.

ϵ = ̄ϵ + 𝑧 κ (17)

Hook law for an isotropic material, under plane stress conditions.

D = 𝐸
1 − 𝜈2

⎛⎜
⎝

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎞⎟
⎠

(18)

Normal components for stress and strain, the latter for the isotropic
material case only.

𝜎𝑧 = 0 (19)

𝜖𝑧 = − 𝜈
1 − 𝜈 (𝜖𝑥 + 𝜖𝑦) (20)

Stresses at P.
σ = D ϵ = D ̄ϵ + 𝑧 D κ (21)
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Figure 2: Positive 𝜅𝑥𝑦 torsional curvature for the plate element. Sub-
figure (a) shows the positive 𝛾𝑥𝑦 shear strain at the upper surface, the
(in-plane) undeformed midsurface, and the negative 𝛾𝑥𝑦 at the lower
surface; the point of sight related to subfigures (b) to (d) are also ev-
idenced. 𝜃 and 𝜑 rotation components decrease with 𝑥 and increase
with 𝑦, respectively, thus leading to positive 𝜅𝑥𝑦 contributions. As
shown in subfigures (c) and (d), the torsional curvature of subfigure (b)
evolves into two anticlastic bending curvatures if the reference system
is aligned with the square plate element diagonals, and hence rotated
by 45∘ with respect to 𝑧.
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Figure 3: XXX

Membrane (direct and shear) stress resultants (stress flows).

q = ⎛⎜
⎝

𝑞𝑥
𝑞𝑦
𝑞𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

σ 𝑑𝑧 (22)

= ∫
ℎ

D 𝑑𝑧
⏟

A

̄ϵ + ∫
ℎ

D 𝑧𝑑𝑧
⏟

B

κ (23)

Bending and torsional moment stress resultants (moment flows).

m = ⎛⎜
⎝

𝑚𝑥
𝑚𝑦
𝑚𝑥𝑦

⎞⎟
⎠

= ∫
ℎ

σ 𝑑𝑧 (24)

= ∫
ℎ

D 𝑧𝑑𝑧
⏟

B ≡ B T

̄ϵ + ∫
ℎ

D 𝑧2𝑑𝑧
⏟⏟⏟⏟⏟

C

κ (25)

Cumulative generalized strain - stress relations for the plate (or for
the laminate)

( q
m ) = ( A B

B T C ) ( ̄ϵ
κ ) (26)
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Hook law for the orthotropic material in plane stress conditions,
with respect to principal axes of orthotropy;

D 123 = ⎛⎜⎜
⎝

𝐸1
1−𝜈12𝜈21

𝜈21𝐸11−𝜈12𝜈21
0

𝜈12𝐸2
1−𝜈12𝜈21

𝐸21−𝜈12𝜈21
0

0 0 𝐺12

⎞⎟⎟
⎠

(27)

⎛⎜
⎝

𝜎1
𝜎2
𝜏12

⎞⎟
⎠

= T 1
⎛⎜
⎝

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎞⎟
⎠

⎛⎜
⎝

𝜖1
𝜖2
𝛾12

⎞⎟
⎠

= T 2
⎛⎜
⎝

𝜖𝑥
𝜖𝑦

𝛾𝑥𝑦

⎞⎟
⎠

(28)

where

T 1 = ⎛⎜
⎝

𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(29)

T 2 = ⎛⎜
⎝

𝑚2 𝑛2 𝑚𝑛
𝑛2 𝑚2 −𝑚𝑛

−2𝑚𝑛 2𝑚𝑛 𝑚2 − 𝑛2
⎞⎟
⎠

(30)

𝛼 is the angle between 1 and x;

𝑚 = cos(𝛼) 𝑛 = sin(𝛼) (31)

The inverse transformations may be obtained based on the relations

T −1
1 (+𝛼) = T 1(−𝛼) T −1

2 (+𝛼) = T 2(−𝛼) (32)

Finally

σ = D ϵ D ≡ D 𝑥𝑦𝑧 = T −1
1 D 123 T 2 (33)

Notes:

• Midplane is ill-defined if the material distribution is not symmet-
ric; the geometric midplane (i.e. the one obtained by ignoring the
material distribution) exhibits no relevant properties in general.
Its definition is nevertheless pretty straighforward.
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• If the unsimmetric laminate is composed by isotropic layers, a
reference plane may be obtained for which the B membrane-to-
bending coupling matrix vanishes; a similar condition may not
be verified in the presence of orthotropic layers.

• Thermally induced distortion is not self-compensated in an un-
symmetric laminate even if the temperature is held constant
through the thickness.
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Figure 4: The not-so-simple four point bending case.
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