

Dipartimento di Ingegneria "Enzo Ferrari"

Progettazione Assistita di Organi di Macchine

Sara Mantovani sara.mantovani@unimore.it

Agenda

Goal The geometry import Mesh generation Contact References

Agenda

Goal

The geometry import

Mesh generation

Contact

References

GOAL Connecting rod and bush: interference loadcase

The present model evaluates the contact pressure occuring in a connecting rod-bush assembly at the bush mounting stage for a radial interference fit equal to 0.03 mm.

This contact is a stationary contact. (increasing the load, the contact area remains constant).

The con-rod shank may be either I-shaped (the shank pockets are frontal) or H-shaped (the pockets are lateral). In the present model, the first one is considered.

Another difficult problem is the selection of the correct interference between eye and bush, that prevents an undesired bush loosening and the microslip between the bush and the small end that may produce fretting fatigue cracks.

09/05/2019

Bush loosening

Connecting rod and bush: interference loadcase

Connecting rod and bush: interference loadcase

FILE I/O MODEL c:\users\manto\doc TEXT DESCRI NEW OPEN MERGE MERGE SAVE											- W <i>pic</i> wi im	We start from a model of <i>piede_cdm2_geom2d3</i> with a geometry preline imported.					el c d3d elim	alled <i>.mfd</i> inary	
RESTORE INTERFACES IMPORT MARC INPUT FILE READ RENUMBER ALL WRITE CURRENT DIRECTORY C: VISETS\manto\Docu	EXPORT						+ + +		+ // + //	+++++++++++++++++++++++++++++++++++++++	+ ++ ++ + + +		++ ++ ++ ++ ++	+ +					
EDIT FILE	RESET PROGRAM													∧ [¥] Z⇒	. X			1	
RETURN	MAIN	UNDO UTILS	SAVE FILES	DRAW	FILL VIEW	RESET	VIEW MODEL	TX+	TY+ TY-	TZ+ TZ-	RX+ RX-	RY+ RY-	RZ+	ZOOM BOX	IN OUT	SHORT	CUTS NGS HE		

Connecting rod and bush: interference loadcase

We start from a model called *piede_cdm2_geom2d3d.mfd* with a geometry preliminary imported.

The model consists of:

- Connecting rod 3D;
- Connecting rod 2D;
- Bush;
- Gudgeon pin.

Identify set of curves

PLOT IDENTIFY SETS

There are four sets of curves that store the curves referring to each component. e.g. bush, conrod, gudgeon pin The surface the of conrod 3d model is stored named as conrod 3d surfaces.

The geometry import The curve plot

Image: Divisions Description: Curve and Surface Plotting Controls Curves and surfaces are represented graphically by linear approximations, referred to as facets. The breakup is performed by recursively subdividing the curve or surface until a specified deviation tolerance distance is satisfied. This tolerance may be specified in absolute or relative terms. The breakup of curves and surface into facets is controlled by the following settings: Relative/Absolute: Specifies whether the tolerance is in terms of an absolute distance, or is in terms of the distance relative to the length of the curve or area of the surface. Tolerance:

The maximum allowed deviation in absolute or relative distance of the facet to the curve or surface.

Max Depth:

The maximum depth of recursion allowed when subdividing the facets. Subdivision will continue until the tolerance is satisfied, or the maximum recursion depth is reached.

Min Depth:

This specifies the minimum depth of recursion, and when set to nonzero values forces the curve or surface to be represented by a minimum number of facets, even though the tolerance may have been satisfied.

It is recommended that relative tolerances be used for the general case. Absolute tolerance may be used to advantage to minimize the drawing of small details in a model whose dimension is known.

For convenience, three predefined settings: *low, medium*, and *high* are provided. The low setting is designed to minimize drawing time, while the high setting is designed to provide an extremely accurate representation of the geometry. The default setting is medium.

PLOT CURVES TOLERANCE 0.01 REGEN

Agenda

Goal The geometry import **Mesh generation** Contact References

A detailed view of the connecting rod curve division.

The con-rod geometry consists of:

- the small end
- the frontal pocket at the shank

The mesh is too coarse to evaluate with a good accuracy the contact pressure between the components in contact.

Therefore, local adjustments of the mesh are performed at zone named:

- 1. Outer circumferencial edge at small end;
- 2. Middle circumferencial edges at small end;
- 3. Vertical edge at small end.

Mesh generation

♦ INDIVIDUAL CURVES **APPLY CURVE DIVISIONS** Select manually the curves shown beside with ID label:

the at miiddle will curves be 64 discretized by circumferential divisions.

MAIN

Detailed view

The mesh is uniformally distributed both in the circumferential (equispaced) and in radial direction (4 divisions).

Finally, store these elements in a collector named conrod_shank.

Global view

09/05/2019

To identify sets:

PLOT SELECT IDENTIFY SETS VISIBILITY SHANK_ELEMS INONE OK

SELECT														MEXSol
NODES 0	CLR	STORE										+	+	
ELEMENTS 0	CLR	STORE								5.			1.	
EDGES 0	CLR	STORE	bus	h VISIBI	ITIIA BA S	5ET					1	_		
FACES 0	CLR	STORE		+ NAME				TYPE		COUNT	VISIBL	E		_
POINTS 0	CLR	STORE	con	rod				curve		4	ALL	NONE	4	
CURVES 0	CLR	STORE		conre	od			curve		17	ALL •	NONE	17	
SURFACES 0	CLR	STORE		gudge	eon_pin			curve		4	→ ALL	NONE	4	
SOLIDS	CLR/	STORE	gud	geon shan	k_elems			elemen	t	403	ALL	A NONE	0	
VETCS/// 0////	CLR	STORE		11										
EDGES 0	CLR	STORE	sha	nk_e										
FACES 0	CLR	STORE		+++										
SELECT SET	SELECT BY	P	non	e			-							
SELECT CONTACT BO	DY ENTITIES	///////////////////////////////////////						ΔΙΙοινς	the s	ets (e c	ı elem	ients c		
FILTER	NONE							/ 110 113						,
METHOD	SINGLE							to be v	Isible	(🗵 ALL	_) or in	visible ((🗵 NO	NE)
SELECT MODE	MAND		1					soloctiv	بامر	•			•	
CLEAR SELECT	RESET							Selectiv	ciy.					
NINE HIGTORE	MANE THUT	OTOTE												
MAKE VISIBLE	P DODIEC	DIBLE												
EACLUDE INVISIBL	E BODIES			MAKE	ALL SETS	VISIBLE					MAKE AL	LL SETS INV	ISIBLE	
STORE NODE PATH	STORE ORDI	ERED												
SETS RENAME	REMOVE P	MERGE							OK					
DEL ENTRIES	ISIBILITY													
DIDENTIFY SETS	IDENTIFY	P					1					+ + +	H¥H+	
ALL SELEC	VISIE	L. TOP										# * *	<u>≢</u> x +	
EXIST UNSEL	INVIS SUR	F. BOT.												
SELECT SET	END LIST	(#)///////												
RETURN	MAIN		UNDO	SAVE	DRYN	FILL	RESET V	IEW TX-	+ TY+	TZ+ RX-	+ RY+	RZ+ Z001	M IN	SHORTCUTS
			UTILS	FILES P	PLOT P	VIEW P	DYN. M	IODEL TX-	- TY-	TZ- RX-	- RY-	RZ- BOX	OUT	SETTINGS HELE

09/05/2019

stored named as pocket_elemts.

Mesh generation Elements selection

Element 3

Plane Stress Quadrilateral

Element 3 is a four-node, isoparametric, arbitrary quadrilateral written for plane stress applications. As this element uses bilinear interpolation functions, the strains tend to be constant throughout the element. This results in a poor representation of shear behavior. The shear (or bending) characteristics can be improved by using alternative interpolation functions. This assumed strain procedure is flagged through the GEOMETRY option.

In general, one needs more of these lower-order elements than the higher-order elements such as 26 or 53. Hence, use a fine mesh.

This element is preferred over higher-order elements when used in a contact analysis.

The stiffness of this element is formed using four-point Gaussian integration.

All constitutive models can be used with this element.

Mesh generation Elements selection

Element 26

Plane Stress, Eight-node Distorted Quadrilateral

Element type 26 is an eight-node, isoparametric, arbitrary quadrilateral written for plane stress applications. This element uses biquadratic interpolation functions to represent the coordinates and displacements. This allows for a more accurate representation of the strain fields in elastic analyses than lower order elements.

Lower-order elements, such as type 3, are preferred in contact analyses.

The stiffness of this element is formed using eight-point Gaussian integration.

All constitutive models can be used with this element.

With extra nodes at the midsides, we can assume quadratic variations in element. This is rather like fitting a given curve with a series of parabolas, instead of straight lines. This makes it easier to fit circles, ...


```
CREATE NODES:
 - AT THE SMALL END INNER RADIUS (ID 2459)
- AT MIDDLE SMALL END (ID 2460)
 - AT OUTER SMALL END (ID 48)
|-----
*add nodes
0
23/2
0
*add nodes
0
25.003/2
0
     _____
   CREATE NODE AT THE SMALL END INNER RADIUS
 create a 1D guadratic element (line3)
| 1 node: inner node (ID 2459)
2 node: outer node (ID 48)
 3 node: middle node (ID 2460)
|-----
*set element class line3
*add elements
2459
48
2460
```

The small end connecting rod mesh will be performed by the expansion of 1D quadratic element (line3) to obtained quadratic and planar elements. This elements are characterized by 8 nodes and 9 integration points.

To create a 1D line(3) element the selection of the nodes is prescribed as follows:

- The first and the second nodes must be the outer nodes of the element;
- The third node is the node located in between of the further nodes.

_____ MESH GENERATION: subdivide The line3 element will be subdivided in three. |-----*subdivide reset *sub_divisions 3 1 1 *subdivide elements all selected 1-----select the elements previously subdivided by class (line3) |-----*select clear elements *select elements *select elements class line3

This 1D quadratic element (line3) has 2.003 mm length. To obtain a fine mesh of the conrod small end, a subdivision of this 1D element is required.

Three divisions will be assessed.

09/05/2019

09/05/2019

At the end, these elements are stored, and the set is called small_end_elems

Mesh generation Sweep

The conrod regions must be sweeped, its borders are characterized by superposed nodes

MAIN MESH GENERATION SWEEP

Mesh generation Sweep

Mesh generation Bush

|-----create a 1D quadratic element (line3) 1 node: outer node (ID 3251) 2 node: inner node (ID 3252) 3 node: middle node (ID 3253) |-----*set element class line3 *add elements 3251 3252 3253 |-----select the element to be subdivided by class (line3) |-----*select clear elements *select elements *select elements class line3 _____ MESH GENERATION: subdivide The line3 element will be subdivided in two. |-----*subdivide reset *sub divisions 2 1 1 *subdivide elements all selected |----select the elements previously subdivided by class (line3) |-----*select clear elements *select elements *select_elements_class line3 |-----

Mesh generation Bush

MESH GENERATION: expand From 1D quadratic elements (line3) to 2D-planar quadratic elements (quad8). |-----*expand reset *set expand point -50 0 0 *set expand repetitions 64 *set expand rotation z -180/64 *expand elements all selected |-----STORE and PLOT the elements in a collector named bush elems |-----*visible all sets *identify sets *regen *invisible set shank elems *invisible set pocket elems *invisible_set small_end_elems *select clear elements *select elements all visible *store elements bush elems all selected *select clear elements *visible_all_sets 1-----

09/05/2019

Mesh generation Gudgeon pin

The mesh of gudgeon pin will be performed adopting the methodology used for the pocket conrod element region, therefore subdividing its curves with a prescribed number of divisions or with a prescribed target length of the elements.

Outer gudgeon pin curve
*select_clear_curves *set_curve_div_type_fix_ndiv *set_curve_div_num 72
*set curve div rest off
*apply_curve_divisions 21879
End of List
*select_clear_curves
Inner and vertical gudgeon pin curves
*set_curve_div_type_fix
<pre>^set_curve_div_type_lix_avgi *set_curve_div_avgi</pre>
0.5
*set curve div rest evn
*set curve div applyrest cvs
*apply curve divisions
21876
21877
21878
all_selected
411

Mesh generation Gudgeon pin

AUTOMESH: Curve divisions planar mesh Quadrilateral 4-nodes elements qudgeon pin |-----*af planar quadmesh gudgeon pin *select clear curves |-----STORE and PLOT the elements in a collector named gudgeon pin elems |-----*invisible set bush elems *invisible_set pocket_elems *invisible set shank elems *invisible_set small_end_elems *select elements all visible *store elements gudgeon pin elems all selected *select clear elements *visible all sets |------FROM QUAD4 TO QUAD8 CHANGE ELEMENTS CLASS _____ *change elements class *change elements quadratic *set change class quad8 *change elements class all visible

09/05/2019

41

Mesh generation The components sets

20

20

60

Plane stress

Plane stress

Plane strain

Small_end_elems

Gudgeon_pin_elems

Bush elems

GEOM ANA STR NEW NAME TYPE GEO H STR	TRIC PROPERTY VSIS CLASS JCTURAL REM shank_elem mech_plana METRIC PROPER RUCTURAL STRUCTURAL GI 3-D AXISYMMETRI PLANAR GAP PLANAR	LES s_18mm r_pstress TY TYPE P TYPES C STRUCTURAL GP TYPES HT BEAM			₽	Ĵ	Ĵ,	The conrod and the bush are treated as planar component under the hypothesis of plane stress ($\sigma_z = 0$, $\tau_{xz} = 0$, $\tau_{yz} = 0$); otherwise the gudgeon pin is modelled assuming the plane strain hypothesis ($\varepsilon_z = 0$, $\gamma_{xz} = 0$, $\gamma_{yz} = 0$).
ID ELEM AII SELF	CAN CURVED PLANE PLANE PLANE PLANE PLANE PLANE PLANE INTERF BUSHIN CANCEL UNSEL INSEL T SET	HI BEAM BEAM STRESS STRAIN REBAR STRAIN MEMBRANE REBAR STRAIN COMPOSITE/GASK ACE G VISIB OUTL TOP HIVIS SURF BOT END LIST (#)	ET					MAIN GEOMETRIC PROPERTIES NEW STRUCTURAL PLANAR PLANE STRESS NAME Type e.g. shank_elems_18mm
RETU	2N	MAIN	UNDO UTILS	SAVE DRAW FILES PLOT	FILL VIEW	RESET VIEW	TX+ TY+ TZ+ TX- TY- TZ-	RX+ RY+ RZ+ ZOOM IN SHORTCUTS RX- RY- RZ- BOX OUT SETTINGS HELP

	GEOMETRIC PROPERTIES		
	STRUCTURAL	PLANE SIRESS SIRUCIURAL FROPERILES	
	NEW REM NAME shank_elems_18mm TYPE mech_planar_pstress	THICKNESS III LELMENT TECHNOLOGY LASSIMED STRAIN	
<u> </u>	COPY PREV NEXT EDIT	CONSTANT TEMPERATURE MAIN	
<u> </u>	BEAM SECTIONS	GEOMETRIC PROPERTIES	
	PLOT SETTINGS	NEW	
	BEAM SHELL THICKNESS DIRECTION		
		PLANAR PLANE STRESS NAME	
		Type e.g. shank_elems_18m	.m
		PROPERTIES	
	ID GEOMETRIES TOOLS	THICKNESS: 18	
	ELEMENTS ADD REM 403		
	ALL SELEC VISIE OUTL TOP	ELEMENTS: ADD	
	SELECT SET END LIST (#)		
	RETURN	UNDO SAVE DRAW FILL RESET VIEW TX+ TY+ TZ+ RX+ RY+ RZ+ ZOOM IN SHORTCUTS UTILS FILES PLOT VIEW DYN. MODEL TX- TY- TZ- RX- RY- RZ- BOX OUT SETTINGS HELP	NJ IN

GEOMETRIC PROPERTIES								MEZXLathouse
STRUCTURAL		NIDDEWETU DEETN	IED CETC					
NEW REM	shank_e	JORRENILI DEFIN	ED SEIS	ana		and the second		ΜΛΙΝΙ
TVPE mech planar pstress		bush elems	alla and a shall be a s		urve////// lement	128	(((())))	
COPY FREY NEXT EDIT	none	conred			urve	120	7777	GEOMETRIC PROPERTIES
PROPERTIES	-	gudgeon_pin		(c)	urve//////	4////		NEW
		gudgeon_pin_el	lems	e	lement	801		STRUCTURAL
BEAM SECTIONS TABLES		pocket_elems		e	lement	319		
PLOT SETTINGS		shank_elems		e	lement	403	_	PLANAR
BEAM SHELL		smari_enu_erem	115		rement	192		PLANE STRESS
THICKNESS DIRECTION								NAME
								Type e a shank alams 18mm
								PROPERTIES
								THICKNESS: 18
				OK				OK
								ELEMENTS ADD
DID GEOMETRIES TOOLS								
ELEMENTS ADD REM 403								SEI
								shank_elems
ALL: SELEC. VISIB. OUTL TOP								OK
SELECT SET END IST (#)								
RETURN MAIN	UNDO CAU	F DRAII	FTTT DF	CET UTEN	TV+ TV	7+ 77+	DV1 DV1	P7+ ZOOM IN SUOPTCUTS
	UTILS FIL	ES P PLOT	VIEW P D	VN. MODEL	TX- TY	- TZ-	RX- RY-	RZ- BOX OUT SETTINGS HELP

The plane stress geometric properties have been applied to the further components, setting propertly the thickness as shown beside.

								been applied for the gudegeon pin
ANALYSIS CLASS								where it is 60 mm thick.
STRUCTURAL	_							
NEW REM	shank_e	CURRENTLY DE	EFINED SET	S				
NAME gudgeon_pin_elems_60mm		bush			curve///		/ <u>X////////</u>	MAIN
TYPE mech_planar_pstrain	none	bush_elems			element		128	GEOMETRIC PROPERTIES
COPY PREV NEXT EDIT		conred			curve			NEW
PROPERTIES	//	gudgeon/pri	n olono		curve		901	
BEAM SECTIONS		pocket ele	n_erems ms		element		319	STRUCTURAL
DIOT CETTINCC		shank_elem:	s		element		403	PLANAR
BEAM SHELL		small_end_	elems		element		192	PI ANE STRAIN
THICKNESS DIRECTION								
								Type e.g.
								gudgeon pin elems 60mm
								PROPERTIES
				OK	<u> </u>			THICKNESS: 60
								OK
DID GEOMETRIES TOOLS								
ELEMENTS ADD REM 0								
								SET
ALL: SELEC. VISIB. OUTL TOP								qudqeon pin elems
EXIST. UNSET INVIS. SURF BOT								
SELECT SET END LIST (#)			1		1	1		
RETORN	UNDO SAT	E DRAW	FILL	RESET VIEW	TX+	TY+	TZ+ RX+ RY	(+

Plane strain geometric property has

Mesh generation Material properties

START MATERIALS -------*new mater standard *mater option general:state:solid *mater name steel *mater option structural:type:elast_plast_iso *mater param structural:youngs modulus 210000 *mater param structural:poissons ratio 0.3 *add mater elements all existing *identify materials *regen *identify_none *regen _____ FINISH MATERIALS

We assume that the components are in steel. The material is assumed to be homogeneous and isotropic.

E = 210000 MPa v = 0.3

Mesh generation: MOVE Components positioning

PLOT THE BUSH AND GUDGEON PIN ELEMENTS AND CURVES	- The components	will be aligned at X-0
<pre>*invisible_all_sets *visible_set bush *visible_set bush_elems *visible_set gudgeon_pin *visible_set gudgeon_pin</pre>	at different Z, us COMBINED.	ing the function MOVE
*visible_set gudgeon_pin_elems	- Co	onrod 2d = 0 mm
<pre>MESH GENERATION: MOVE (STEP 1) BOTH BUSH AND GUDGEON PIN H *move_reset *set_move_translation x 50 *set_move_translation z 50 *move_combined all_visible *invisible_set bush *invisible_set bush *invisible_set bush_elems</pre>	Bush Z = 50 mm Gudgeon pin Z = 100 mm	
MESH GENERATION: MOVE (STEP 2) GUDGEON PIN ONLY	V ₊	+ + + + + + + + +
<pre> *move_combined all_visible *visible all sets</pre>	-	Z X

Mesh generation: SWEEP Components positioning

MESH GENERATION: SWEEP
*set_sweep_tolerance 0.0001 *sweep_all
Command prompt
Deleting 8 duplicate nodes!
Deleting 0 collapsed elements!
Deleting 0 duplicate elements!
Deleting 228 duplicate points!
1

We decide to remove the redundant nodes by the function SWEEP at MESH GENERATION MENU without collapsing any elements. The tolerance has been set lower than minimum «element size» (ca. 0.2 mm) divided by 2 (due to the use of quadratic elements), therefore it is set equal to 0.0001 mm.

Save the file at this stage!!!!

Agenda

Goal The geometry import Mesh generation **Contact** References

Contact

Contact bodies: ANALYTICAL vs DiSCRETE

Cubic Spline Representation

Actual Geometry

Finite Element Approximation

·: Nodes with a normal vector discontinuity

Contact Contact bodies: ANALYTICAL & DISCONTINUITY

These commands are used to set the type of boundary description for a deformable body or a rigid body with heat transfer, modeled using lower-order finite elements.

In the default discrete description, the boundary of the contacted body is described by the finite elements defining the body. This can cause inaccuracies due to the fact that the normals of the body are not continuous for a curved boundary described with lower-order elements.

In the analytical description, linear segments are replaced by:

- spline curves for 2D contacted bodies;
- Coons surfaces for 3D contacted bodies.

These analytical entities provide a smooth description of the boundary of contacted bodies and nodes of a contacting body are now touching the analytical entities instead of the actual finite elements. The analytical entities are updated as the body is deformed.

Since the modeled structure may have corners (2D) or edges (3D) where the normals are discontinuous, at such places the smoothing procedure should not be applied. They can be identified:

- manually;
- automatically;
- combined manually and automatically.

Contact Contact bodies

When the discontinuity method is manual, one can use the commands add_cbody_dc_nodes (2D) and add_cbody_dc_edges (3D) to add a list of nodes (2D) or edges (3D) with normal discontinuities. When the discontinuity method is automatic, one can define a threshold angle (default 60 degrees). If the angle between the normals of two adjacent segments exceeds this threshold, MSC.Marc will automatically add the corresponding node or edge to the list of discontinuities. When the discontinuity method is manual and automatic, the user can still manually define a list of discontinuity nodes or edges and MSC.Marc will compare the angle between the normals of adjacent segments with the threshold angle and add nodes or edges to the user-defined list if needed.

Finally, in 3D one can activate C0-continuity at edges where the normals are discontinuous. If this is done, the in-plane description of the segment is modified, taking into account the curved shape of the edge where the boundary normal is discontinuous.

Contact Contact bodies

09/05/2019

The Signorini inaqualies relations that manage the unilateral contact definition cannot be solved in a FEM equation system; therefore, unilateral BCs are treated by activating or deactivating bilateral BCs.

$$\begin{cases} g_i \ge 0 \\ p_i \ge 0 \\ g_i \cdot p_i \ge 0 \end{cases}$$

09/05/2019

Contact Contact bodies

 $w_{i,}$, w_{i} , w_{m} : nodal displacement of the *i*-th, *l*- or *m*-node. g_{i} : distance from the *i*-th node to the surface of the other body p_{i} : contact pressure

Engineering practice	from the body with	considered from the body with						
1- Bodies with different mesh size	the finest mesh	the coarse mesh						
2- Bodies with smoothed or notched profiles.	the notched geometry	the smoothed geometry						

Contact Contact bodies

The Signorini inaqualies relations that manage the unilateral contact definition cannot be solved in a FEM equation system; therefore, unilateral BCs are treated by activating or deactivating bilateral BCs.

$$\begin{cases} g_i \ge 0 \\ p_i \ge 0 \\ g_i \cdot p_i = 0 \end{cases}$$

The contact pressure distribution is calculated from the reaction forces R_i that act in a prescribed surface a_i over which that forces are distributed. An example on 2D model is reported, where the area on which the force is distributed is defined by the sum of the mid-portion body edges involved in the contact problem.

Contact Contact bodies: summary

Contact body	YES/NO	TYPE	From each body, we consider the …
Shank_elems	NO	-	-
Pocket_elems	NO	-	-
Small_end_elems	YES	DISCRETE	NODES
Bush_elems	YES	ANALITYCAL	SPLINE
Gudgeon_pin_elems	YES	DISCRETE	NODES

A contact body is a set of curves, surfaces, or **elements** that act as a body in a contact analysis. In a contact analysis, there must be at least two contact bodies, at least one of which must be a deformable body.

The elements at the inner radius of the conrod are in contact with the elements of the bush, therefore a deformable contact body is defined. The bodies are characterized by the same elements size and no notches are present.

MAIN CONTACT CONTACT BODIES NEW TYPE: MESH (DEFORMABLE)

													MAIN					
	CONTACT BODIES												CON	TACT				
	ANALYSIS CLASS	1	MESI	HED BODY									CON	TACT	BOD	IES		
	SIRUCIORAL		SH	OV PROPER	TIES	STRU	CTURAL						NEW					
	NAME small_end_c	b	A	PPROACH V	ELOCITY			8							· ц / г			
\neg	TYPE Meshed (Def	ormable)		NISOTROPI	C FRICTI	ON								2. IVIEC F			/IADLI	=)
	COPY PREV N	EXT DIT PICK						_						E				
	PROPERTIES		JEW	EAR				12					Туре	e.g. sr	nall_	end_cb		
	MODEL SECTIONS	DD REM 0											PRO	PERTI	ES			
	ELEMENTS	DD REM 0											DISC	RETE				
	CONTROL DODY HICTOR	דד דידיט	BO	UNDARY DES	SCRIPTIO	N /							OK					
	CUNTACI BUDI VISIB.			DISCRETE		\sim												
			OB	SOLETE PRO	OPERTIES			12							- ¥		+	
			RE	SET									OK			+		
									A 17				J		U	+	+	
											键					+	S.	
	DETECT MESHED BODIN	ES							1	ARE!						+		
	DID CONTACT	ID BACKFACES								田井	12					+ +	÷#	
	FLIP ELEMENTS	FLIP CURVES									E.			AY			(+)	
	FLIP SURFACES	TABLES									王王				+			
	ALL SELEC V	ISIE OUTL TOP									扫			<u> </u> z⇒x		+		
	SELECT SET	END LIST (#)							11		一						. +	
	RETURN	MAIN	UNDO	SAVE	DRAW	FILL	RESET	VIEW	TX+	TY+	TZ+	RX+ I	RV+ RZ+	ZOOM	IN	SHORTCUTS		
			UTILS	FILES -	PLOT P	VIEW	DYN.	MODEL	TX-	TY-	TZ-	RX-	RY- RZ-	BOX	OUT	SETTINGS	HELP	

Contact Contact bodies: bush_cb

Contact Contact bodies: bush_cb

Contact Contact bodies: bush_cb

To delete at the analytical body bush the discontinuity nodes, see as follows:

Contact Contact bodies: gudgeon_pin_cb

1
CONTACT BODY
bobi 5> Gudgeon_pin_cb. Deformable Discrete
<pre> *new_cbody mesh *contact_option state:solid *contact_option skip_structural:off *contact_body_name gudgeon_pin_cb *contact_option defo_desc:discrete *add_contact_body_elements gudgeon_pin_elems </pre>
*identify contact *regen
*identify_none *regen

The gudgeon pin is treated as a DISCRETE contact body, as discussed similarly to the small_end_cb.

Finally, the contact bodies defined in the model are highlighted by turning on:

☑ ID CONTACT

Contact **Contact interactions**

This menu allows for the input of properties defining the interaction between contact bodies (discretized by mesh or defined by geometric entities such as curves or surfaces). Typical examples of such properties are the coefficient of friction, the heat transfer coefficient and the contact separation stress. Contact interaction sets are referenced by using the contact table option.

	CONTACT INTERACTIONS ANALYSIS CLASS STRUCTURAL NEW REM								+ +					⁻ they ar deformab To defin
 /	NAME unilateral_frinctionless TYPE Meshed (Deformable)		CONTACT	INTER	RACTION	TYPE						+		between
	Meshed (Deformable) COPY FREY NEXT EDIT		MESHE MESH	D (DEF ED (DE	ORMABLI FORMAB	E) vs. LE)								scrutiny,
	PROPERTIES		MESHE	D (DEF	ORMABL) VS.						+		tollowing
	MERGE DUPLICATE INTERACTIONS		MESHE	D (DEF	ORMABL	E) vs								CONTAC
	REMOVE ALL INTERACTIONS		GEOM	ETRIC								+ +		CONTAC
			MESHE	D (DEF	ORMABL	E) vs.					+			NEW
			CEONE	TDIC /	UTTL. M	NDECN		_	_					TYPE:
			GEOME	ETRIC	(WITH N	NODES)	8							MESH (I
			GEOME	TRIC (ETRIC	WITH N	DDES) v	18							MESHED
			GEOME	TRIC (WITH N	DDES) v	rs	_						NAME:
	TIPTEC	a.	SYMM	EIRY										unilateral_
	ALL SELEC VISIB OUTL TOP	1	CANCE	L										X
	EXIST UNSEL INVIS SURF BOT													Z
	RETURN MAIN	UNDO	SAVE	DRAW	FILL	RESET VI	EV	TX+	TY+	TZ+	RX+	R¥+	RZ+	ZOOM IN SH
		UTILS	FILES	PLOT	VIEW	DYN. MO	DEL	TX-	ТҰ-	TZ-	RX-	RY-	RZ-	BUX OUT SE

09/05/2019

Our parts are meshed and modelled е as le bodies.

e the interaction the bodies under therefore use the procedure:

Т

T INTERACTIONS DEFORMABLE) vs (DEFORMABLE)

> Type frictionless

> > HELP

Contact Contact interactions

To define the interaction between the bodies under scrutiny:

	CONTACT INTERACTIONS		CONTACT CONTACT INTERACTIONS
	STRUCTURAL	I Marc Mentat Contact Interaction Properties	
	NEW REM	CONTACT INTERACTION PROPERTIES	
	NAME unilateral_frictionless	NAME unilateral_frictionless	MESH (DEFORMABLE) vs
	Meshed (Deformable)	Meshed (Deformable)	MESHED (DEFORMABLE)
	COPY PREV NEXT EDIT	CURRENT JOB	
	PROPERTIES		
V	MERGE DUPLICATE INTERACTIONS		unilatoral frictionloss
	REMOVE UNUSED INTERACTIONS	CONTACT TOLEBANCE REDEFINED VALUE 0.001	unilateral_inctioniess
	REMOVE ALL INTERACTIONS	BIAS FACTOR TEFAULT	
		SEGMENTS AT SHARP CORNERS	CONTACT TYPE:
			CONTACT TOLERANCE: 0.001
		AT INITIAL CONTACT	
		SHOW PROPERTIES TSTRUCTURAL	OK
		SEPARATION P FRICTION P	
		AUGHENTATION	
		DECET	
	TABLES	RESE I	UN INTERNET
	AIL: SELEC VISIB OUTL TOP		
	SELECT SET END LIST (#)		*Z
	RETURN	UNDO SAVE DRAW FILL RESET VIEW TX+ TY+ TZ+ RX+ RY+ I	RZ+ ZOOM IN SHORTCUTS
		UTILS FILES FLOT VIEW PON HODEL TX- TY- TZ- RX- RY- I	RZ- OUT SETTINGS HELP

Contact Contact table

A contact table is a set of entries which specifies the relationship between contact bodies in a contact analysis.

Contact tables can be used for different purposes, like:

- indicate which set of bodies may or may not touch each other, so that computational time can be saved;
- define different properties per set of contact bodies, like friction coefficient, error tolerance, separation force, and film coefficient;
- activate glued contact, which can be effectively used to couple separately meshed parts of a structure.

Note that the contact tables must be activated in the loadcase where they are to be used. This is defined in the CONTACT menu for the different loadcase types. Notice that if the user wants to deactivate existing contact between bodies, only selecting a different contact table in which contact between the relevant bodies is not allowed is not sufficient, you also have to release contact between those bodies.

For the correct detection of initial contact (before the first loadcase), the contact table should also be activated in the current job. This is done in the INITIAL CONTACT menu in the CONTACT CONTROL menu for each analysis class (e.g. for an uncoupled structural analysis, it is defined in JOBS-> PROPERTIES-> CONTACT CONTROL-> INITIAL CONTACT-> CONTACT TABLE).

By default, if no contact table is used, every deformable body detects possible contact with every other body including itself.

ANALYSI	IS CLASS		- P-							
STRUCTU	JRAL		Marc Mentat Contact Table Properties							
ទោ	DEM		CONTACT TAB	LE PROPERTIES						
IAME	ctablel	_	NAME	stable1	VIEW MODE VENTRY MAT	TRIX				
OPY	PREV	NEXT//////								
DODEDET	P O		ENTRIES	SHOW VISIBLE BODI	ES ONLY					
ROPERTI	23					SECOND				
		TADIDO		BODY NAME	BODY TYPE	1 2 3				
		TABLES	FIRST	1 small_end_cb	Meshed (Deformable)					
				2 bush_cb	Meshed (Deformable)					
				3 gudgeon_pin_cb	Meshed (Deformable)					
II.	SELPC	VISIB OU INVIS SU	ADD/REPLAC		FFAILT CONTACT TOUCHING	GLUED				
II. SIST ELECT	SELPC	VISIB OU INVIS SU END IIST	ADD/REPLAC	LE ENTRIES	EFAULT CONTACT TOUCHING	GLUED				

To define the contact between the bodies under scrutiny:

CONTACT CONTACT TABLES NEW NAME: *e.g.* Type *ctable_interference_fit* PROPERTIES ACTIVE

The table is defined as a battleship; where the contact bodies are listed. (FIRST BODY : column; SECOND BODY: row)

To define the contact between the *small_end_cb* and the *bush_cb* select or the box highlighted in yellow or the box highlighted in red, as shown in Figure.

For the present model, the yellow box has been considered, and the red has been inherited.

CONTACT TABLES		
ANALYSIS CLASS	I Marc Mentat Contact Table Entry Properties	
STRUCTURAL	CONTACT TABLE ENTRY PROPERTIES	The nodes
NEW	CURRENT JOB	
NAME ctable interference		
COPY PREV///// NEX	NAME ctable_interference_fit	projected of
· · · · · · · · · · · · · · · · · · ·	BODY PAIR FIRST small_end_cb Heshed (Detormable) PICK MAKE VISIBLE	hush ch (
PROPERTIES	SECOND bush_cb Heshed (Deformable)	busii_cb (
	# ACTIVE	BODY).
	CONTACT INTERACTION Unilateral_frictionless Touching EDIT	
	CONTACT DETECTION METHOD FIRST->SECOND	The diamet
	BOUNDARY REDEFINITION	to 0,03 mn
		the INTERF
		will be app
		table varvin
	RESET OK	time. There
		INTERFERI
	SHOWN ENTRIES ACTIVATE DEACTIVATE REMOVE DETECTION REMOVE INACTIVE	
ALL SELEC VISIB	ADD/REPLACE ENTRIES FULL DEFAULT CONTACT TOUCHING GLUED	
EXIST UNSEL INVIS		
SELECT SET END	ок	
RETURN	The second se	
		<u>4 001 </u>

CONTACT INTERACTION Upload the unilateral_frictionless interaction contact defined previously

CONTACT DETECTION METHOD: FIRST→ SECOND

of the small_end_cb ONTCAT BODY) are on the edge of the SECOND CONTACT

tral interference equal n must be defined by ERENCE FIT menu. It lied gradually using a g during the modelling efore:

ENCE FIT

	Marc Mentat Con	tact Table Entry Int	erference Fit Parameters				- 0	×
	NTACT TABLE	ENTRY INTERF	ERENCE FIT PARAMETERS					
N	RODV PATR	FIRST	small end ch		Meshed (Deformable)	PICK	MAKE VISIBLE	
N	Dobr Lata	SECOND	bush_cb		Meshed (Deformable)			
	INTERFERENCI	T FTT	-					
	METHOD	CONTACT 1	NORMAL					
	CLOSURE	0.03	TABLE		1			
				ļ				
L				<u> </u>			-	
L		_					J	
L								
J	_			ACTIVATE	DEACTIVATE	DEWATE	DETECTION	
			SHOWN ENTRIES	ACTIVATE	DEACTIVATE	REMOVE	DETECTION	REMOVE INACTIVE
	SELEC	91549//	SHOWN ENTRIES	ACTIVATE	DEACTIVATE	REMOVE	DETECTION	REMOVE INACTIVE
, 11 (A11) (A13)	SELEC	91518 19955	SHOWN ENTRIES	ACTIVATE	DEACTIVATE FULL DEFAULT CONTAC	REMOVE	DETECTION HING GLUED	REMOVE INACTIVE
AII FEIS SELE	SELOS TURSEL CT SET	VISIE TINVIS EIT	SHOWN ENTRIES	ACTIVATE	DEACTIVATE FULL DEFAULT CONTAC	REMOVE TOUC	DETECTION HING GLUED	REMOVE INACTIVE
ALI EXIS SELE RETU	SELDC TUNEL CT SET	VISIB DAVIS EDD - MAIN	SHOWN ENTRIES	ACTIVATE	DEACTIVATE	REMOVE	DETECTION HING GLUED	REMOVE INACTIVE

CONTACT INTERACTION Upload the *unilateral_frictionless* contact interaction defined previously

CONTACT DETECTION METHOD: FIRST→ SECOND

The nodes of the *small_end_cb* (FIRST CONTACT BODY) are projected on the edge of the *bush_cb* (SECOND CONTACT BODY).

The diametral interference equal to 0,03 mm must be defined by the INTERFERENCE FIT menu. It will be applied gradually using a table varying during the modelling time. Therefore:

INTERFERENCE FIT

CLOSURE: 0.03

To define the table, we move to the TABLE MENU located at the CONTACT TABLE main menu. Therefore, quit these sub-menus by confirming OK three times.

09/05/2019

The TABLE that modulates the INTERFERENCE is defined by DATA POINTS, and the modelling time is set equal to 2, as follows

NAME:

table1_interference_fit INDIPENDENT VARIABLE V1: Time MIN: 0 MAX: 2 DATA POINTS:

- 0 0 1 1
- 21

The interference is associated to the variable V1 and its final amount (0.03 mm) is applied by this piecewise law varying during the modelling TIME.

In the first modelling phase (1 sec) the interference is applied with a linear law, during the second phase (2 sec) the interference will be maintained constant at its maximum value.

09/05/2019

Contact table

The number of independent and dependent variables must be given.

A table may have multiple independent variables.

The number of independent variables ranges from 1 to 4, each variable having a different table type (physical meaning).

A table consists of a row of data points for each independent variable, and a matrix of function values defining the dependent variable.

Especially for use in the EXPERIMENTAL DATA FIT menus, tables with 1 independent variable and 2 dependent variables may be created. In that case, the table consists of one row of data points for the independent variable, and 2 matrices of function values defining the dependent variables.

Possible combinations of independent and dependent variables:

nindep = 1, ndep = 1: z = f(v1)

nindep = 2, ndep = 1: z = f(v1, v2)

nindep = 3, ndep = 1: z = f(v1, v2, v3)

nindep = 4, ndep = 1: z = f(v1, v2, v3, v4)

nindep = 1, ndep = 2: z = f(v1), z2 = f2(v1)

A table may be applied to parameters specified by the user. Possible parameters include degree of freedom values in boundary conditions, and material property values. Multiple tables may be defined and are stored in the list of currently defined tables.

CONTACT TABLE F	NTRY INTERFE le_interfere	ERENCE FIT PARAMET nce_fit	ERS					contact defined between <i>small_end_cb</i> and the <i>bush_</i> o	the cb.
BODY PAIR	FIRST	small_end_cb		Meshed (Deformable)	PICK	MAKE VISIBLE		CONTACT	
INTERFERENCE METHOD CLOSURE	SECOND FIT CONTACT N 0.03	bush_ob	ABLE table1	Meshed (Deformable)				CONTACT CONTACT TABLES NAME: <i>ctable_interference_m</i> PROPERTIES At the yellow intersection of contact as shown previously, INTERFERENCE FIT TABLE	fit the T
	_		OK			J		Upload the TABLE named table1_interference_fit	as
		SHOWN ENTRIES	ACTIVATE	DEACTIVATE	REMOVE	DETECTION	REMOVE INAC	ОК	
LL SELEC	VISIB	ADD/REPLACE ENTR	RIES 🗠	FULL DEFAULT CONTACT	TOUCH	HING GLUED			
SELECT SET	END MAIN		L01112 CTTT		PIN. NOPEL	OK	112- 184-		

Now, assess the table to the

CONTACT	TABLE	PROPE	RTIES						
NAME	ctal	ole_i	nterference_fit		VIEW MODE	V ENTRY MAT	TRIX		
ENTRIES	5		SHOW VIS	SIBLE BODIES ONLY					
			ļ				SECO	b	
	1	1	BOOY NAME		BODY TYPE		1	2 3	
FIRST		0	saali_end_cb		Meshed (Defo:	raable)		T	
Strenders.	1	B	bush_cb		Meshed (Defo:	raable)			
			gudgeon_pin_cb		Meshed (Defo:	rsable)	1 1	STATE OF STREET, STREE	
Course of	-	6 612	LACTIVITE .	I TRACTIVATI	DENOUP	Iner	FCTION	C DEMOND THAT	CTTVE
Stronge	Carriett	*	activate	Logary III was I	a. Interiova	DE1	DOTION	PEROVE 1100	CITAR .
ADD-REP	LACE E	NTRIE	S C	FULL DEPAULT	ONTACT	TOUCHING	GLUED		
2									
							ok		
			2	LU:	15 13			24.7	

Now, we define the CONTACT between the *bush_cb* and the *gudgen_pin_cb*. The gudgeon pin is not involved during the bush press fit with the conrod small end. However, the gudgeon pin is included into the model and the model is set so that the gudgeon pin does not contribute to the press fit manufacturing phase.

To define the contact between the *bush_cb* and the *gudgeon_pin_cb* select or the box highlighted in green or the box highlighted in blue, as shown in Figure.

For the present model, the green box has been considered, and the blue has been inherited.

The table is defined as a battleship; where the contact bodies are listed. (FIRST BODY: column \rightarrow gudgeon_pin_cb; SECOND BODY: row \rightarrow bush_cb)

CONTACT CONTACT TABLES NAME: *ctable_interference_fit* PROPERTIES Select the green box.

NAME ctabl	e_interfere	ence_fit				
BODY PAIR	FIRST	bush_cb	Meshed (Deformable)	PICK	MAKE VISIBLE
	SECOND	gudgeon_pin_cb	Meshed (Deformable	•)		
ACTIVE						
ACTIVE						

CONTACT CONTACT TABLES NAME: *ctable_interference_fit* PROPERTIES Select the green box. ♦ ACTIVE

Contact Table

III Marc Mentat Contact Table Entry Properties	-
CONTACT TABLE ENTRY PROPERTIES	
CURRENT JOB	
NAME ctable_interference_fit	
BODY PAIR FIRST bush_cb Meshed (Deformable)	PICK MAKE VISI
SECOND gudgeon_pin_cb Meshed (Deformable)	
ACTIVE	
CONTACT INTERACTION Unilateral frictionless Touching FDIT	
CONTACT DETECTION METHOD SECOND->FIRST	
BOUNDARY REDEFINITION	
INTERFERENCE FIT	
HARD-SOFT RATIO 2	
RESET	OK
SHOWN ENTRIES ACTIVATE DEACTIVATE REMOVE DETECTION	REMOVE INACTIVE
ADD/REPLACE ENTRIES FULL DEFAULT CONTACT TOUCHING GLUED	-
OK	

CONTACT INTERACTION Upload the *unilateral_frictionless* contact interaction previously defined.

CONTACT DETECTION METHOD: \diamond SECOND \rightarrow FIRST

OK

The nodes of the *gudgeon_pin_cb* (fine mesh) are projected to the edges of the *bush_cb* (coarse mesh).

The contact is frictionless, and the gudgeon pin is mounted as floating, therefore and initial clearence between the bush and the pin will be considered in the following.

As previoulsy discussed the gudgeon pin is not involved during the bush press fit threfore it contact might be deactivate.

Now Deflag ACTIVE!!!!!

MARE Ctable_Interference_Itt BODY FAIR FIRST bush_cb Meshed (Deformable) PICK MAKE VISIE SECOND gudgeon_pin_cb Meshed (Deformable) PICK MAKE VISIE	BODY FAIR FIRST bush_cb Meshed (Deformable) PICK MAKE VISIBLE SECOND gudgeon_pin_cb Meshed (Deformable) PICK MAKE VISIBLE
BODY FAIR PIRe1 DUSI_CD Meshed (Deformable) FICK MAKE VISIT SECOND gudgeon_pin_cb Meshed (Deformable) FICK MAKE VISIT	DODY FAIR FIRST Dust_CD Meshed (Deformable) Fick Make visible SECOND gudgeon_pin_cb Meshed (Deformable) Meshed (
RESET JACGON JACGON JII CD MASHED (DETEXABLE)	JACTIVE
RESET	ACTIVE
RESET	
RESET	
RESET	
RESET OK	
RESET	
OK	
RESET OK	
	PESET LOV
	RESET OK
	OK
	OK

CONTACT INTERACTION Upload the *unilateral_frictionless* contact interaction previously defined.

CONTACT DETECTION METHOD: \diamond SECOND \rightarrow FIRST

OK

The nodes of the *gudgeon_pin_cb* (fine mesh) are projected to the edges of the *bush_cb* (coarse mesh).

The contact is frictionless, and the gudgeon pin is mounted as floating, thereforeand initial clearence between the bush and the pin itself will be considered in the following.

As previoulsy discussed the gudgeon pin is not involved during the bush press fit threfore it contact might be deactivate.

Now Deflag ACTIVE!!!!!

Contact table Contact Table: Summary

-														
CONTA	ACT TABLE	E PROP	ERTIES											
NAM	E ct.	able_i	.nterference_fit	VI	IEW MODE	VENTRY MAT	RIX			1				
ENT	RIFS													
			SHOW VISIB	LE BODIES ONLY										
							Ş	SECONI	D					
			BODY NAME		BODY TYPE		1	L		3				
FI	IRST	1	small_end_cb		Meshed (Defor	mable)		R	T P	×				
		2	bush_cb		Meshed (Defor	mable)		J	P					
		3	gudgeon_pin_cb		Meshed (Defor	mable)		P	- 12					
	IONI ENT	DIRC	ACTIVATE	DEACTIVATE	PENOUE	DET	FOTION			DENOUE	THICTTUE			
SE	HUWN ENTE	RIES	ACTIVATE	DEACTIVATE	REMOVE	DEI	ECTION			REMOVE	INACIIVE			
ADD.	/REPLACE	ENTRI	ES	FULL DEFAULT CONT	LACT	TOUCHING	GLUE	ED		í.				
							01/			1				

Agenda

Goal The geometry import Mesh generation Contact **References**

References

Manufacturing process:

• Shrink-fit

https://www.youtube.com/watch?v=US6rMtLR6nE

• Press-fit

https://www.youtube.com/watch?v=c16bHqs3J2Q

Book:

Strozzi A, Costruzioni di Macchine, Ed. Pitagora (1998):

- Plane stress and plane strain, pp. 138-157;
- Pressure vessels, pp. 657-679;
- Shaft-hub press-fit, pp. 690-700;
- Contact problems, pp. 501-518.

Maxima:

 pf_lame.wxmx → analytical evalution of the contact pressure between the bush and the conrod small-end.

FE model file:

- piede_cdm2_geom2d3d_set.mfd → starting file
- conrod2d_rev03.proc → file procedure
- id26_quad8elems_planestress_fullintegration.pdf → element ID 26 formulation
- id3_quad4elems_planestress_fullintegration.pdf → element ID 3 formulation

Escher

... to be continued.

