SECTION 8
SUMMARY OF DAMPING IN AEROSPACE MATERIALS AND STRUCTURES

The typical damping levels in aerospace materials and the more common
structures are summarized in this section. The ievels quoted are not to be
treated as absolute values, but more as an indication of the expected average
damping values. In reality, there is considerable scatter in the measured
damping data, especially for built up structures. A deviation from the quoted
damping value of a facter of two, either way, is quite possible for these
structures. A more detailed discussion on the nature of damping and the damp-
ing levels in the materials and some more common aesospace structures is
contained in Section 7, Volume I of the design guide. A large list of references
is also provided in that section for further study. This 1ist aleo includes
references for material damping in nonmetallic materials. Methods for measur-
ing material damping are ulso discussed in some detail in that section since
the damping values are generally very low and can be easily contaminated by

the test method or the test apparatus.

All of the dampiug data in this section are presented in terms of the
viscous damping ratio,(. The relationships between the nore common damping
expressions used In reprezenting material damping are the loss factor (or
structural damping), 1, the logarithmic decrement,d, the specific damping
capacity, ¢, and the amplification factor,Q. These are related by
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The damping data for aerospace metals are presented first followed by
composites, metal matrix composites and acrospace structures. Much of the
damping in stiffened panel type structures has been measured only for the
fundamental mode. A method is provided by which the damping in the higher

order modes can be estimated from the frequency and damping of the fundamental




mode. The commonly used une-over-the-frequency type variation of the damping
with frequency is valid only if higher modes are included in such data. The
damping in the fundamental mode of stiftened panel type structures is essen-
tially constant with frequency. This behaviour has only recently been discovered

[8.1]) and verified by careful experiment [8.2].

Acoustic radiation damping also plays a greater role in the damping of
riveted aluminum panels than origirally thought. It is the dominant source of
damping in stiffened aluminum and composite honeycomb panels [3.5]. Acoustic
radiation is the only source of damping in integrally stiffened graphite/epoxy
panels [8.3, 8.4] on account of the very low damping in graphite/epoxy
material. The damping in these panels can now be predicted by theory (8.1,
8.5). These developments are discussed in more detail both in Section 8.2 and

in Section 7, Volume I of the design guide.

8.1 MATERIAL DAMPING IN AEROSPACE METALS AND COMPOSITES

8.1.1 Material Damping in Metals

The typical damping leveis irn the more common metals are listed in
Table 8.1. In some of the metals, the material damping varies with dynamic
stress amplitude [8.6, 8.7] as illustrated in [8.7] Figures 8.1 anu 8.2.
In some metals such as aluminum, the damping remains counstant with stress level
but is dependent on frequency, with maximum damping occuring at the relaxation
frequency (see Section 7, Volume I). Sowe metals have especially high material
damping values. These materials [8.8] are indicated in Figure 8.3 as a func-
tion of their Youns's modulus for quick reference. Typical material damping

values for steel and aluminum are includad for comparison.

8.1.2 Material Damping in Composites with Epoxy or Polyester Matrix

The material damping in graphite, boron, Kevlar and glass fiber reinforced
composites in, primarily, an epsxy matrix are presented in this section. The
materiai damping is the lowest in unidirectional composite layups, with the

fibers running parallel to the axial direction. Typical dawping values are
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listed in Table 8.2. The boron and graphite epoxy composites have the lowest
material damping and Kevlar has the highest.

TABLE §.1. TYPICAL MATERIAL DAMPING LEVELS IN METALS

MATERIAL VISCOUS DAMPING RATIO
4
Mild steel 0.002% - 0.005
Alloy steel 0.0005 -~ 0.004
Aluminum alloy 0.00005 - 0.0012
T{tanium alloy =0,0009

The damping in composites varies both with fiber volume as illustrated
[8.9] in Figv.e 8.4 and with fiber orientation as illustrated in Figures 8.5
and 8.6 for graphite/epoxy [8.10] and Kevlar [8.2, 8.5}, respectively. The
material damping in composites, including the uniaxial composites, is derived
entirely from the mateiial damping in the matrix, as indicated in Table 8.3, in
this instance for uniaxial aligned chopped €iber ccmposites {8.11]. The
damping in the uniaxial composites is not affected significantly by temperature
{8.10]. For other fiber orientations, it follows the damping behaviour of
the epoxy with temperature [Figure 8.7}. The shear (torsion) damping in
composites is also high because of its dependence on the resin damping. Ttre
damping in axially aligned chopped fiber comprsites [8.11, 8.12, 8.13] can
be increased by the use of progressively smal <r fibers at the expense of a
progressively reduced modulus. The variation of the damping in the composi%es
with fiber orientation is predictable by theory [8.14, 8.15] based on the
measured axial, transverse and shear damping values and the corresponding

Young's moduli of uniaxial composites.

8.1.3 Metal Matrix Composites
The measured material damping in metal matrix composites is summarized

in Table 8.4. A number of types of reinforcing fibers are used in, basically,

an aluminum or magnesium matrix. The damping appears to be reasonavly ccn-
stant with frequency but does vary with both stress amplitude and temperature
[8.16]. '
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AT L

TAE.E 8.2 TYPICAL DAMPING VALUES IN UNIDIRECTIONAL
COMPOSITES WITH AXIAL FIBERS

Fiber Flexural Viscous
Voiume Modulus Damping
Material Fraction MSI Ratio
Vf T
Fiberglass/Epoxy 0.72 7.79 0.0005
0.50 5.48 0.0007
Fiberglass/Pclyester 0.66 6.2 0.0009%
0.54 4.95 0.0r12
Kevlar/Epoxy 0.65 9.75 0.0t '8
HM Craphite/Polyester 0.54 25.8 0.0011
0.61 33.6 0.00
HT-S Graphite/LY558 Epoxy 0.6C 17.9 0.00015%
0.70 19.7 0.00012%
HT-5 Graphite/F-HNA Epoxy 0.70 20.5 0.00012%
HT-S Graphite/’®LA 4517 Epoxy 0.60 19 0.00053
AS1 Craphite/3501-6 Epoxy - - 0.0005
Celion 3000 Graphite/5208 Epoxy - 21.1 0.00033
Celion 3000 Graphite/5213 Epoxy - 19.7 0.00024
GY~70 Craphite/934 Epoxy - 42.3 0.00045
HM-S Graphite/CY209 - HT972 Epoxy 0.5 22.3 0.00049
Boron/Epoxy 0.55 27.6 0.00064

*L,owest values ever mea.ared.
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TABLE 8.3. EFFECT °F RESIN DAMPING ON THE DAMPING OF CHOPPED
ALIGNFJ GRAPHITE FIBER COMPOSITE

I

chopped Fiber Composite
Material Resin (Vi*= 0.6)

Identified by Viscous Viscous
Resin Number Modulus Damping Moduius Damping
Only [8.11] MS1 Ratio, § Ratio, ¢

1 0.144 0.075 13.25 0.004
5 0.475 0.0035 17.62 0.00025

6 0.249 0.075 16.69 (-.005
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TABLE 8.4 MATERIAL DAMPING

IN METAL MATRIX COMPOSIZIES

Fiber Flexural Viscous
Volume Modulus Damping
Material Fraction MS1 Ratio
v g
f
Boron BR4C/6061 Al 0.57 34.1 0.00038
P55 Graphite/6061 Al - 26.4 0.00088
P100 Graphite/6061 Al - 42.5 0.00085
P55 Craphite/ZE41A Mg - 23.1 0.00070
P100 Craphite/ZE41A Mg - 4.8 0.00065
P55 Craphite/AZ91C-Ti - ~ 0.0004
100 Graphite/AZ91C-Ti - - 0.0004
P100 Graphite/AZ91C-Mg - - 0.0010
FP-A1 203/1.1 Al - 32 0.00045
FP-A1203/C‘PQ Mg bt 30 0000045
FP-AIZOB/ZeélA Mg - 30 0.00045
Particulate SiC/6C61 Al 0.45 22 0.0002%~
0.001
Whiskers S1C/6061 Al 0.20 14.1 0.0002*~
00001

*Damping decreases with frequency, with lower damping value at higher

frequency (6000 Hz) and the higher damping value at low frequency

(10 Hz).
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8.2 DAMPING IN STIFFENED HONEYCOMB AND STIFFENED MULTI-BAY COMPOSLTE AND
METAL PANELS

8.2.1 Nature of the Damping

Stiffened multi-bay panels and stiffened honcycomb panels are typically
used in secondary aircraft structures, which can also be exposed to high level
acoustic loading. As a consequence, these types of structure are used in
acoustic fatigue tests which represent the major source of information on the
damping of these structures. A nine-bay panel, with a larger center bay, is
typically used to represent the multi-bay pauel. The intent is to ensure that
failures occur in the periphery of the center bay and not along the test frame
edges where the interpretation of the results becomes difficult. However,
multi-bay panels with even stiffener spacings and even number of panels in the
array have also been used. This variety of panel configurations has lead to
difficulties in both identifying and interpreting the panel modes since many
"fundamental” modes can exist with frequencies dependent on which adjacent
panels combine in the vibration. The situation can be .even more confusing for
the higher modes. In contrast, stiffened honeycomb panels are tested singly
on account of their large size. Modes, and damping trends of these modes, can
be readily identified. Testing of stiffened honeycomb panels [8.2, 8.5] pro-
vided the conclusive experimental evidence of the near constant damping
behaviour [8.1] in the fundamental mode (Figure 8.8). More receatly, the trend
has been towards the greater use of composites, employing fasterer attached
large-bay minisandwich skin construction {8.17], bonding (8.18, 8.19] or inte-
grally stiffened construction [8.3, 8.20]}. Bonding has also been used with
aluminum panels [8.21, 8.22].

The highest damping is generally obtained in the fundamenta! mode. The
danping usually falls off in level, in the higher modes of the panel, with
increasing mode number. Acoustic radiation damping behaves in a similar
manner. The reduction in the higher mode damping is produced by the cancel-
lation effect. Since acoustic radiation is proportional to the area of each
panel in the panel array, cancellation effect can also be obtained in a panel

array in whichk the adjacent panels are vibrating out-of-phase with each other.
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The acoustic damping in this instance would be the acoustic damping of a single
panel divided by the number cf panels vibrating out-of-phase. If the panels
are all vibrating in-phase then the acoustic damping is the same as that of a
single panel in the array. The panels obviously have to have equal stiffener

spacing for this type of response to occur.

Basically, therc should be no significant dif{ference in the damping of
identical bonded metal, bonded composite or integrally stiffened metal or com-
posite panels since the dominant source of damping Is duc %0 acoustic radiation.
Kevlar composites have a significant waterial damping, with a viscous damping
ratio of approximately 0.008 or more, which murt be added to the acoustic radia-
tion dawping. Also, the friction damping at the f{aatener line, in fastener
attached panels, must be added to the acoustic radiation damping. Even then the
acoustic radiation damping still dominates. This result [8.1] is fllustrated
in Figure 8.9 by comparing the fundamental mode damping in multi-bay riveted
panels [8.23] with that in multi-bay bonded panels [8.21]. The average duamp-
ing is slightly lower for the bonded panels. The constant fuudamental mode
damping with frequency is also evident in the fipure. The main difference is
obtained in the higher panel modes where the damping at the fastener line
becomes the dominant source of damping. In integrally stiffened or bonded
panels, the damping level continues to drop down towards the material damping
level for the layup used in the composite skin, as illustrated in Figure 8.10,
or to that provided by the bonding. The material dauping of a quasi-isotropic
graphite/epoxy panei, with a (0°, #45°, 90°)s layup in the skin. has a viscous
damping ratio around 0.00i5. There is virtually no difference in the funda-
mental mode damping of fastener attachad graphite/epoxy and aluminum panels
(Figure 8.8) of similar size, although the smaller Kevlar honeycomb panels did
exhibit a higher damping due to the significant contriﬁution from the material
damping. The most encouraging result is that the damping in these panels are
predictable (Figures 8.10 and 8.11), subject to thc usual scatter in the test
data.
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8.2.2 Damping Levels

The damping levels for the fundamental mode of a ramge of stiffened panel
type structures are summarized in Table 8.5. These are the average measured
damping levels. The actual damping can vary by a factor of two or more above
and below this value due to scatter in the data as illustrated in Table 8.5.
The damping data are least defined for multi-bay composite panels. The data
that are available |8.3, 8.20, 8.21] range from a low viscous damping ratio of
0.0042 to a high value of 0.047 in the fundamental mode. Since the high damp-
ing values are generally for panels with a large center bay, these damping
values are generally predictable. It is the low damping values that are least
predictable. Consequently, based on the Jiscussion in the previous section,

the bonded and integrally stiffened graphite/epoxy panels are assumed to have
I the same average damping as the bonded aluminum skin-stringer panels. The

average damping for the fundamental mode of integrally stiffened Kevlar cloth
panels has been obtained by adding the average material damping from the

+45 degree layup in Figure 8.6 to the bonded aluminum skin-stringer panel
damping.

The actual measured damping for the praphite/epoxy box structure (the
NASA L-1011 composite aileron) is quoted in Table 8.5. The mini-sandwich
panel sizes used in the NASA L-1011 composite aiicron are much larger than used
in the corresponding aluminum design. Thus, a direct comparison between the
damping of the aluminum box structure in Table 8.5 and that from the composite

aileron is probably not valid.

Chemical milling has the effect of increasing the resonant frequency of
the pancl relative to a panel with the unmilled skin. Since the fundamental
mode damping of a stiffened panel is, basically, unaffected Ly frequency, the
damping in the chemically milled panel is assumed (Table 8.5) to be the same

{
as that of a conventional skin-stringer panel.

e e e

The method for predicting the damping of the skin-stringer panels is the

same as that described in Reference {8.1]. For simplicity, the panel array




TABLE 8.5 FUNDAMENTAL MODE VISCOUS DAMPING RATIO FOR METAL
AND COMPOSITE STIFFENED PANEL TYPE STRUCTURES

Average Typical Range
Viscous of Measured Data
Damping
Structures Ratio Minimum Maximum
4 4 4
Riveted aluminum skin-striager 0.0145 0.005 0.05
panels both flat and curved
with and without sealant
Riveted titanium skin-stringer 0.0145 0.008 0.03
panels
Riveted aluminum box structure 0.0145 0.008 0.04
Bonded aluminum skin-stringer 0.0125 0.009 0.022
panels
Bonded and integrally stiffened 0.0125 0.0042 0.947
graphite/epoxy panels
Bonded and integrally stiffened 0.020%* 0.012% -
Kevlar cloth panels
Graphite/epoxy box structure 0.004 Only one .tested
assemtled with fasteners
Fastener -. ' nched stiffened 0.019 0.013 0.027
metal a.. - iphite/epoxy
honeycom: ::anrls
Fagtener attached stiffened 0.027 Only two tested
Kevlar honeycomb panels
Corrugated and closely sraced 0.017 0.014 0.019
hat stiffened aluminum panel
structure
Built-up aluminum structures 0.0057 0.0019 0.0145
with integrally machined skins
Riveted chemically milled 0.0145% - -

aluminum panels {expected to be
the game as skin-stringer panels
but at higher frequency).

*Estimated.

8-18




is assumed to have a large center bay which produces the dominant vibration
response and, therefore, the highest rms strain level to excitation such as
randon acoustic loading. In the most general panel, the damping is composed of
three parts. These are the acoustic radiation damping, the fastener-1like
friction damping and the material damping represented by the viscous damping
ratios Cé' CF and cM' respectively. The viscous damping ratio,cmn,in the m.nth

mode of a skin-stringer type panel is given by

Cmn = Lyt toy (8.1)
The material démping is obtained from previously described beam tests for

the particular layup used in the composite panel. It is usually taken as

zero for graphite/epoxy and aiuminum panels. The material damping for a Kevlar

panel with a #45° cioth layup is given approximately by = 0.008.

"u

The viscous damping ratio due to acoustic radiation can be calculated from

the equation

£
6, = %%-“ f::z——:é (8.2)
where )

p = density of air

¢ = gpeed of sound in air

fn = natural frequency of the m,nth mode

M = panel surfa-e density
a,bl= panel length and width
m,n = mode number in the length and width dircction respectively

The viscous damping ratio due to friction at the fastener line is given

approximately by 8.1}

s(ath) - 2 - g

fp = 0.0253 —eomonon B B (8.3)

where s is the number of fasteners per Inch and the other dimensions are
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also given in inches. The above equation is based on a viscons damping

ratio of 0.0085 measured on a particular pane! array under near vacuum
conditions. A viscous damping ratio of only 0.0034 has been measured on a

large unbaffled curved panel array. The friction damping is considercd to
produce the greatest scatter in the data due to variability in the fabri.ation
of the panels. Consequently, the constant term in equation 8.3 can be adjusted
to reflect actual measured friction damping levels. For bonded aluminum and
composite panels, and integrally sciffened composite panels, Lp = 0. ‘The degree
of correlation achieved by this method ls illustrated in Figure 8.12 and in

Figure 8.13 for the fundamental mode of two typical paneis.

The damping in the higher order modes 07 a panel can be predicted using
the average fundamental mode viscous damping ratio in Table 8.5 for the appro-
priate stiffened structure, the fundamental mode resonant frequency of the panel

and the resonant frequency of the higher mode. The viscous damping ratio for

the m,nth mode is given by
an 1
San =y Ty T O ('f"“ ‘ ’é) TR (8.4)
11 ma
where
Lmn = m,nth mode viscous damping ratio
;11 = fundamental mode viscous damping ratio
CM = contribution from material! damping
CF = contribution from friction damping of the rivet line (equation 8.3)
fmn = m,nth mode resonant frequency
f11 = fundamental mode resonant frequency

Typical higher mode viscous damping ratios predicted by equatjon 8.4 are
illustrated in Figure 8.13.
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8.2.4 Effect of Axial and Shear In-Plane Loads on Stiffened Panels Damping

The damping of stiffened panels under axial in-plane loading [8.24] remains
constant with axial tension load, but increases with compression on approaching
buckling. The damping of the panel becomes nonlinear on approaching buckling
as iudicated by a change in the rate of the free decay response with amplitude.
The damping of the stiffened panel also increagses with in-plane shear load on
approaching panel buckling {8.25], as illustrated in Figure 8.14 for an inte-
grally J~stiffened mini-sandwich panel. The damping in noncritical modes also
increases on approaching shear buckling. Typical variation of the modal

frequencies with shear load is illustrated in Figure 8.15.

8.2.5 Effect of Fluid Loading on Stiffened Panel DPamping
The effect of fluid loading on the damping of stiffened steel panels
[{8.26] with welded T-section stiffeners is illustrated in Figure 8.16. There

is virtually no difference in the damping of the panel when in air or when in
contact, on one side, with water. There is a gshift in frequency due to a
combination of mass loading and hydrodynamic pressure. The one-over-the-~

frequency type trand line is due to the presence of higher order modes.

8.3 DAMPING IN STIFFENED SHELLS

The viscous damping ratios measured on two untrimmed aircraft fuselage
shells [8.27, 8.28] and on a small diameter stiffened cylinder [8.29], both
with and without acoustic trim, are illusirated in Figure 8.17. The damping

data ior all three of the untrimmed shells appear to collapse onto a single
curve. The interior acoustic trim, even when not in contact with the shell
skin, does appear to increase the damping approximately by a factor of four
over the bare shell damping. The one-over~-the~frequency trend line is again

due to the presence of higher order modes.

8.4 DAMPING IN SPACECRAFL AND ROCKETS

Typical damping data measured during ground vibration tests on unmanned
spacecraft [8.30, 8.31] ure illustrated in Figures 8.18 and 8.19. The
limited damping data |8.30] measured or a spinning satellite indicate that
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Damping schedule for Titan launch vehicle.

8-29




similar damping levels (Figure 8.18) are also obtained in orbit. Friction
Jamping in the joints is the main source of damping in these spacecraft, both

on the ground and in orbit.

Typical damping schedule [8.30] of = rocket, used to launch some of the
unmanned spacecraft, is :llustrate” in Figure 8.20. Damping levels measured
on the space shuttle ascent vinicle {8.32] currently used to launch unmanned

spacecraft, are illustratrd in Figure 8.21.

8.5 DAMPING IN JET ENGINT. COMPONENTS
Typical damping levels in jet engine components taken from Section 6 of

this volume are summarized in Table 8.6.

8.6 DAMPING IN PRINTED CIRCUIT BOARDS

Typical measured damping in printed circuit boards [8.33, 8.34] is
suumarized in Table 8.7. A method for predicting the circuit board damping
{8.33] is also contained in the table.
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TABLE 8.6. MEASURED DAMPING

VALUES FOR ENGINi COMPONENTS

Frequency Viscous Damping
Description of Structure Hz Ratio -
TF-41 Jet Engine Inlet Extension 3140 0.0011 to 0.0027%

RF-33-P3 Turbojet
Engine Welded Inlet
Guide Vanes (IGV) and Shrouds

Engine Rear Mount Ring

TF-30 Jet Engine Welded
Titanium Guide Vanes

Helicopter Turbine Engine
Exh -ust Stacks N

Jet Engine Turbine
Blade

Exducer - Turbing
Blade Assembly

1000 to 5000

374
403
203
1172
1396
3515
4325

3000 to 4000

50 to 500

746 Bending |
824 Torsion |

5300
8500

0.0012 to 0.0023*

0.0037
- 0.0033
0.0045
0.0030
0.0037
0.0040
0.0049

0.0009 to 0.0018*

0.0005 to 0.005

0.001 to 0.002

0.0022 to 0.0039*
0.0009 to 0.0014

*Damping varies with temperature
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TABLE 8.7.

DAMPING VALUES

TYPLCAL RANGE OF MEASURED PRINTED CIRCUIT BOARD

Frequency

tn Hz. 4 Q K Refere ice
65 0.0142 35 4.3 8.34
165 0.023 22 1.71 8.34
215 (2p's input) 0.033 15 1.023 8.33
182 (5g's input) 0.045 11.2 -
161 (10g's input) 0.061 8.2 -

Empirical relationship [ 8,33 ]

. 1/2
Q =~ K (F)

K 0.5 + 2 Typical

Input 2g's and less
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