DAMPING CROSS-REFERENCE

There are at least eleven parameters commonly used to express damping. Cross-reference formulas are given in Tables 1A through 1C. The formulas are taken from Reference 1.

Let ω_n be the natural frequency in units of radians per second. Note that $\omega_n=2\pi f_n$, where f_n is in units of Hertz.

Table 1A. Damping Reference				
Parameter	3 dB	3 dB	Damping	Loss Factor η
	Bandwidth $\Delta\omega$	Bandwidth ∆f	Frequency fd	
	(rad/sec)	(Hz)	(Hz)	
3 dB Bandwidth				
$\Delta\omega$ (rad/sec)	_	$\Delta\omega = 2\pi\Delta f$	$\Delta\omega = 4\pi fd$	$\Delta\omega = \omega_n \eta$
3 dB Bandwidth				$\omega_n \eta$
Δf (Hz)	, Δω	_	$\Delta f = 2fd$	$\Delta f = \frac{\omega_n \eta}{2\pi}$
	$\Delta f = \frac{\Delta \omega}{2\pi}$			
Damping		_{c 1} Δf		_{ε,1} ω _η η
Frequency fd	$f d = \frac{\Delta \omega}{4\pi}$	$f d = \frac{\Delta f}{2}$	_	$f d = \frac{\omega_n \eta}{4\pi}$
(Hz)				
Loss Factor η	$\eta = \frac{\Delta \omega}{\omega}$	$m = \frac{2\pi\Delta f}{2\pi}$	$\eta = \frac{4\pi \mathrm{fd}}{1}$	_
	$\eta - \frac{1}{\omega_n}$	$\eta = \frac{2\pi\Delta f}{\omega_n}$	$\omega_{\rm n}$	
Fraction of				
Critical Damping	, Δω	, $\pi\Delta \mathrm{f}$	$\sim 2\pi \mathrm{fd}$	μη
ζ	$\zeta = \frac{\Delta \omega}{2\omega_{\rm n}}$	$\zeta = \frac{\pi \Delta f}{\omega_n}$	$\zeta = \frac{2\pi fd}{\omega_n}$	$\zeta = \frac{\eta}{2}$
Quality Factor Q				1
Quality I actor Q	$Q = \frac{\omega_n}{\Delta \omega}$	$Q = \frac{\omega_n}{2\pi\Delta f}$	$Q = \frac{\omega_n}{4\pi f d}$	$Q = \frac{1}{r}$
		2πΔ1	4π1α	η
Decay Constant	$\sigma = \frac{\Delta \omega}{\omega}$		• 01	$\sigma = \frac{\omega_n \eta}{\eta}$
σ (1/sec)	2	$\sigma = \pi \Delta f$	$\sigma = 2\pi fd$	2
Time Constant τ	$\tau - 2$	$\tau = \frac{1}{\pi \Delta f}$	$\tau = \frac{1}{2\pi f d}$	$\tau = \frac{2}{2}$
(sec)	$\sigma = \frac{\Delta\omega}{2}$ $\tau = \frac{2}{\Delta\omega}$	${\mathfrak c} = \frac{1}{\pi \Delta {\mathfrak f}}$	$t = \frac{1}{2\pi fd}$	$\sigma = \frac{\omega_n \eta}{2}$ $\tau = \frac{2}{\omega_n \eta}$
Reverberation		D.T. 2.2	рт 1.1	
Time RT ₆₀ (sec)	$RT_{60} = \frac{13.8}{\Delta\omega}$	$RT_{60} = \frac{2.2}{\Delta f}$	$RT_{60} = \frac{1.1}{fd}$	$RT_{60} = \frac{13.8}{\omega_n \eta}$
Decay Rate D	$D = 4.34\Delta\omega$	$D = 27.3\Delta f$	D = 54.6 fd	$D = 4.34 \omega_n \eta$
(dB/sec)				
Logarithmic	$\delta = \frac{\pi \Delta \omega}{}$	$\delta = \frac{2\pi^2 \Delta f}{}$	$\delta = \frac{4\pi^2 \text{fd}}{}$	_
Decrement δ	$\omega = \frac{\omega_n}{\omega_n}$			$\delta = \pi \eta$
	11	$\omega_{\rm n}$	$\omega_{\rm n}$	

Table 1B. Damping Reference					
Parameter	Fraction of Critical Damping ζ	Quality Factor Q	Decay Constant σ (1/sec)	Time Constant τ (sec)	
3 dB Bandwidth $\Delta\omega$ (rad/sec)	$\Delta\omega = 2\omega_n \zeta$	$\Delta\omega = \frac{\omega_n}{Q}$	$\Delta\omega = 2\sigma$	$\Delta \omega = \frac{2}{\tau}$	
3 dB Bandwidth Δf (Hz)	$\Delta f = \frac{\omega_n \zeta}{\pi}$ $f d = \frac{\omega_n \zeta}{2\pi}$	$\Delta f = \frac{\omega_n}{2\pi Q}$	$\Delta f = \frac{\sigma}{\pi}$	$\Delta f = \frac{1}{\pi \tau}$	
Damping Frequency fd (Hz)	$f d = \frac{\omega_n \zeta}{2\pi}$	$f d = \frac{\omega_n}{4\pi Q}$	$f d = \frac{\sigma}{2\pi}$	$f d = \frac{1}{2\pi\tau}$	
Loss Factor η	$\eta = 2\zeta$	$\eta = \frac{1}{Q}$	$\eta = \frac{2\sigma}{\omega_n}$	$\eta = \frac{2}{\omega_n \tau}$	
Fraction of Critical Damping ζ	_	$\eta = \frac{1}{Q}$ $\zeta = \frac{1}{2Q}$	$\zeta = \frac{\sigma}{\omega_n}$	$\zeta = \frac{1}{\omega_n \tau}$	
Quality Factor Q	$Q = \frac{1}{2\zeta}$	_	$Q = \frac{\omega_n}{2\sigma}$	$Q = \frac{\omega_n \tau}{2}$ $\sigma = \frac{1}{\tau}$	
Decay Constant σ (1/sec)	$\sigma = \omega_n \zeta$	$\sigma = \frac{\omega_n}{2Q}$	_	$\sigma = \frac{1}{\tau}$	
Time Constant τ (sec)	$\tau = \frac{1}{\omega_n \zeta}$	$\tau = \frac{2Q}{\omega_n}$	$\tau = \frac{1}{\sigma}$	_	
Reverberation Time RT ₆₀ (sec)	$RT_{60} = \frac{6.9}{\omega_n \zeta}$	$RT_{60} = \frac{13.8Q}{\omega_n}$	$RT_{60} = \frac{6.9}{2\sigma}$	$RT_{60} = 6.9 \tau$	
Decay Rate D (dB/sec)	$D = 8.68 \omega_n \zeta$	$D = \frac{4.34 \omega_n}{Q}$	$D = 8.68\sigma$	$D = \frac{8.68}{\tau}$	
Logarithmic Decrement δ	$\delta = 2\pi\zeta$	$\delta = \frac{\pi \Delta \omega}{Q}$	$\delta = \frac{2\pi\sigma}{\omega_n}$	$\delta = \frac{2\pi}{\omega_n \tau}$	

Table 1C. Dampi	Table 1C. Damping Reference					
Parameter	Reverberation	Decay Rate D	Logarithmic			
	Time RT ₆₀	(dB/sec)	Decrement δ			
	(sec)					
3 dB Bandwidth	$\Delta \omega = \frac{13.8}{RT_{60}}$	$\Delta\omega = \frac{D}{4.34}$	$\Delta\omega = \frac{\omega_n \delta}{\pi}$			
$\Delta\omega$ (rad/sec)	RT ₆₀	4.34	π			
3 dB Bandwidth	$\Delta f = \frac{2.2}{RT_{60}}$	$\Delta f = \frac{D}{27.3}$	$\Delta f = \frac{\omega_n \delta}{\delta}$			
Δf (Hz)	$^{\Delta r}$ RT ₆₀	27.3	$\Delta f = \frac{\omega_n \delta}{2\pi^2}$			
Damping	fd = 1.1	fd - D	$_{\rm fd}$ – $\omega_{\rm n}\delta$			
Frequency fd	$fd = \frac{1.1}{RT_{60}}$	$f d = \frac{D}{54.5}$	$f d = \frac{\omega_n \delta}{4\pi^2}$			
(Hz)	12.0	D	2			
Loss Factor η	$\eta = \frac{13.8}{\omega_n \text{ RT}_{60}}$	$\eta = \frac{D}{4.34\omega_{\rm n}}$	$\eta = \frac{\delta}{\pi}$			
			π			
Fraction of	$\zeta = \frac{6.90}{\omega_n \text{ RT}_{60}}$	$\zeta = \frac{D}{8.68\omega_n}$	$\zeta = \frac{\delta}{2\pi}$			
Critical Damping ζ	$\omega_{\rm n} { m RT}_{60}$	$8.68\omega_{\rm n}$	2π			
Quality Factor Q	$Q = \frac{\omega_n RT_{60}}{13.8}$	$\Omega = \frac{4.34 \omega_n}{1.34 \omega_n}$	$Q = \frac{\pi \omega_n}{\delta}$			
		$Q = \frac{4.34 \omega_n}{D}$	_			
Decay Constant	$\sigma = \frac{6.90}{RT_{60}}$	$\sigma = \frac{D}{D}$	$\sigma = \frac{\omega_n \delta}{2\pi}$			
σ (1/sec)	RT ₆₀	$\sigma = \frac{D}{8.68}$	2π			
Time Constant τ	$_{\tau}$ RT ₆₀	$\tau = \frac{8.68}{D}$	$\tau = 2\pi$			
(sec)	$\tau = \frac{RT_{60}}{6.90}$	D	$\tau = \frac{2\pi}{\omega_n \delta}$			
Reverberation	_	PT 40 = 60	PT-10 - 43.4			
Time RT ₆₀ (sec)		$RT_{60} = \frac{60}{D}$	$RT_{60} = \frac{43.4}{\omega_n \delta}$			
Decay Rate D	$D = \frac{60}{DT}$	_	$D = 1.38 \omega_n \delta$			
(dB/sec)	$D = \frac{RT_{60}}{R}$					
Logarithmic	δ = 43.4	$\frac{\pi D}{\sin \pi}$	_			
Decrement δ	$\omega_{\rm n}$ RT ₆₀	$\delta = \frac{\pi D}{4.34 \omega_{\rm n}}$				

Reference

1. Svend Gade and Henrik Herlufsen, "Digital Filter versus FFT Techniques for Damping Measurement," Sound and Vibration, Bay Village, Ohio, March 1990.

DAMPING PROPERTIES OF MATERIALS

The purpose of this tutorial is to give typical damping values for various materials and systems.

The data in Tables 1 and 2 is taken from Reference 1.

Table 1.						
Static Properties of Materials under Standard Conditions						
(approx. 20° C).						
Material	Density	Modulus	Modulus	Poisson's		
Wiateriai	(kg/m ³)	(N/m ²)	(N/m ²)	Ratio		
	(kg/III)	, ,	(IN/III)	1100010		
Aluminum	2700	72 (10 ⁹)	27 (10 ⁹)	0.34		
Lead	11,300	17 (10 ⁹)	6 (10 ⁹)	0.43		
Iron	7800	200 (10 ⁹)	77 (10 ⁹)	0.30		
Steel	7800	210 (10 ⁹)	77 (10 ⁹)	0.31		
Gold	19,300	80 (10 ⁹)	28 (10 ⁹)	0.423		
Copper	8900	125 (10 ⁹)	46 (10 ⁹)	0.35		
Magnesium	1740	43 (10 ⁹)	17 (10 ⁹)	0.29		
Brass	8500	95 (10 ⁹)	36 (10 ⁹)	0.33		
Nickel	8900	205 (10 ⁹)	77 (10 ⁹)	0.30		
Silver	10,500	80 (10 ⁹)	29 (10 ⁹)	0.37		
Bismuth	9800	3.3 (10 ⁹)	1.3 (10 ⁹)	0.38		
Zinc	7130	13.1(10 ⁹)	5 (10 ⁹)	0.33		
Tin	7280	4.4 (10 ⁹)	1.6 (10 ⁹)	0.39		

Table 2.					
Dynamic Properties of Materials under Standard Conditions (approx. 20° C)					
	Propagation	Propagation			
Material	Velocity of	Velocity of	Longitudinal Loss	Flexural Loss	
	Longitudinal	Torsional	Factor	Factor	
	Wave in a Rod	Wave			
	(meters/sec)	(meters/sec)			
Aluminum	5200	3100	$0.3 \text{ to } 10 \left(10^{-5}\right)$	$\approx 10^{-4}$ $\approx 2(10^{-2})$	
Lead			5 to 30 (10^{-2})	$\approx 2^{(10^{-2})}$	
(pure)	1250	730	3 to 30 (10)	2(10)	
Lead					
(including			1 to 4 (10^{-3})		
antimony)			1 10 4 (10)		
Iron	5050	3100	1 to 4 (10^{-4})	2 to $6(10^{-4})$	
Steel	5100	3100	$0.2 \text{ to } 3 \left(10^{-4}\right)$		
Gold	2000	1200	$\approx 3 \left(10^{-4}\right)$		
Copper			$\approx 2 \left(10^{-3}\right)$	$\approx 2(10^{-3})$	
(polycrystalline)	3700	2300	2 (10)	2(10)	
Copper			2 to $7(10^{-4})$		
(single crystal)			2 10 7 (10)		
Magnesium	5000	3100		≈ 10 ⁻⁴	
Brass	3200	2100	$0.2 \text{ to } 1 \left(10^{-3}\right)$	< 10 ⁻³	
Nickel	4800	2900		< 10 ⁻³	
Silver	2700	1600	$\approx 4\left(10^{-4}\right)$	$< 3 (10^{-3})$	
Bismuth	580	360	, ,	$\approx 8 \left(10^{-4}\right)$	
Zinc	1350	850		$\approx 3 \left(10^{-4}\right)$	
Tin	780	470		$\approx 20 \left(10^{-4}\right)$	

Notes:

- 1. Some loss factors are unavailable.
- 2. The relationship between the loss factor η and the viscous damping ratio ξ is: $\eta = 2\xi$.

The data in Table 3 is taken from Reference 2.

Table 3. Representative Damping Ratios				
System	Viscous Damping Ratio ξ			
Metals (in elastic range)	<0.01			
Continuous Metal Structures	0.02 to 0.04			
Metal Structure with Joints	0.03 to 0.07			
Aluminum / Steel Transmission Lines	≈0.0004			
Small Diameter Piping Systems	0.01 to 0.02			
Large Diameter Piping Systems	0.02 to 0.03			
Auto Shock Absorbers	≈0.30			
Rubber	≈0.05			
Large Buildings during Earthquakes	0.01 to 0.05			
Prestressed Concrete Structures	0.02 to 0.05			
Reinforced Concrete Structures	0.04 to 0.07			

The data in Tables 4 through 6 is taken from Reference 3.

Table 4. Material Damping Ratios (Bare Structure)				
System	Viscous Damping Ratio ξ			
Reinforced Concrete				
Small Stress Intensity (uncracked)	0.007 to 0.010			
Medium Stress Intensity (fully cracked)	0.010 to 0.040			
High Stress Intensity (fully cracked but no yielding of reinforcement)	0.005 to 0.008			
Prestressed Concrete (uncracked)	0.04 to 0.07			
Partially Prestressed Concrete (slightly cracked)	0.008 to 0.012			
Composite	0.002 to 0.003			
Steel	0.001 to 0.002			

C.1

Table 5. Footbridge Damping				
Construction Type	Viscous Damping Ratio ξ			
	Min.	Mean	Max.	
Reinforced Concrete	0.008	0.013	0.020	
Prestressed Concrete	0.005	0.010	0.017	
Composite	0.003	0.006	-	
Steel	0.002	0.004	-	

1.1

Table 6. Building Damping				
Construction Type	Viscous Damping Ratio ξ			
	Min.	Mean	Max.	
Tall Buildings (h > ~100 m)				
Reinforced concrete Steel	0.010 0.007	0.015 0.010	0.020 0.013	
Buildings (h ~ 50 m)				
Reinforced concrete Steel	0.020 0.015	0.025 0.020	0.030 0.025	

3.1

The damping values in the tables should be used with caution. There are many types of damping, such as viscous, hysteresis, acoustic coupling, air pumping at joints, energy radiation to the soil, etc. Also, boundaries and bearings contribute damping.

Furthermore, structures have many modes. Each mode may have a unique damping value.

References

1. L. Cremer and M. Heckl, <u>Structure-Borne Sound</u>, Springer-Verlag, New York, 1988.

- 2. V. Adams and A. Askenazi, <u>Building Better Products with Finite Element Analysis</u>, OnWord Press, Santa Fe, N.M., 1999.
- 3. H. Bachmann, et al., <u>Vibration Problems in Structures</u>, Birkhauser Verlag, Berlin, 1995.