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This review article has two parts, published in separate issues of this journal, which consider
the stress singularities that occur in linear elastostatics. In the present Part |, after a brief re-
view of the singularities that attend concentrated loads, attention is focused on the singulari-
ties that occur away from such loading, and primarily on 2D configurations. A number of ex-
amples of these singularities are given in the Introduction. For all of these examples, it is
absolutely essential that the presence of singularities at least be recognized if the stress fields
are to be used in attempts to ensure structural integrity. Given an appreciation of a stress sin-
gularity’s occurrence, there are two options open to the stress analyst if the stress analysis is
to actually be used. First, to try and improve the modeling so that the singularity is removed
and physically sensible stresses result. Second, to try and interpret singularities that persist in
a physically meaningful way. Section 2 of the paper reviews avenues available for the re-
moval of stress singularities. At this time, further research is needed to effect the removal of
all singularities. Section 3 of the paper reviews possible interpretations of singularities. At this
time, interpretations using the singularity coefficient, or stress intensity factor, would appear to
be the best available. To implement an approach using stress intensity factors in a general
context, two types of companion analysis are usually required: analytical asymptotics to char-
acterize local singular fields; and numerical analysis to capture participation in global configu-
rations. Section 4 of the paper reviews both types of analysis. At this time, methods for both
are fairly well developed. Studies in the literature which actually effect asymptotic analyses of
specific singular configurations will be considered in Part Il of this review article. The present
Part | has 182 referencelOIl: 10.1115/1.1762503

1 INTRODUCTION also focus on loading which is quasi-static. For such classical
. elasticity fields, two classes of singular configurations may
1.1 Objective and scope be distinguished: those wherein singularities occur under

Stress singularities are not of the real world. Nonethelegsincentrated loads, and those wherein they occur away from
they can be a real fact of a stress analysis. Then it is essendi@y concentrated loading. For either, it is important to rec-
to take them into account if the analysis is to be of any reafjnize the presence of stress singularities and to appreciate
use. The primary objective of this review is to assist in thigeir nature. In what follows we give examples of both, then
regard. That is, in the first instance, to aid in the all-importamiirn our attention to the latter because it typically presents
task of recognition of a singularity’s presence, then, in thgreater difficulties to the stress analyst.
second instance, to aid in removal or interpretation.

Throughout this review we takstress singularitiegs in-
volving stresses which, in themselves, are unbounded. Spe2 Examples of stress singularities under concentrated
cifically, we are concerned with when such singularities cdoads

occur in the linear elastic regime. This is a key regime sing&ncentrated loading configurations induce singularities di-
elastic response physically precedes plastic flow, so that P@ctly by applying finite stress resultantsg, forces, mo-
troducing plasticity does not remove the singular characterifient$ over regions with vanishingly small areéey, points,

any true senseTo keep the scope of the article within reatines). As such they may be termesingular loads Table 1
sonable limits, we further restrict attention to materialexhibits the singular character of the stresses for a basic set
which are homogeneous, or piecewise so, and isotropic. \Wesuch loads.
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We expand on this point in Section 2.1.
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Table 1. Basic singular loads of classical elasticity

3D stress 2D stress F
Load type state at load (r—0) state at load (r—0)
Isolated force ord(r2) ord(r %) R
Doublet state ord(r %) ord(r~?)

In Table 1,r is the distance from the point of application (@ (b)
of a singular load, and we have employed the ord notatio
For a functionf(r), here this has

F
f(r)=ordr~?) as r—o0 (1.1) F\l .
if —{ e—p o
r’f(ry=c#0 as r—0 1.2) F/T—T—[
where y and c are constants. The traditional large order Elastic soid F

notation, in contrast, admits the possibility that0. Pro-
vided nonzero loads are being appli@dcannot be every- (©
where zero for the stresses in Table 1.

Examples of solutions for isolated force problems in thrggg. 1 Some limiting configurations for doublet statay:concen-
dimensions are: the point load in the infinite elastic mediutfated momentp) force doublet without a moment) center of
by Kelvin (Thomson[1]), the normal point load on the sur-Compression
face of an elastic half-space of Boussing2fj the tangential

point load on a half-space surface of Cerf], and point g gier[16] Articles 36 and 42. The stresses in all of these

loads within a half-space in Mi”d”h“]-_A convenient com- so|utions comply with their respective orders of singularity
pendium of these closed-form solutions may be found Hiven in Table 1.

Poulos and Davi$5], Section 2.1. Inspection of these solu- The nature of the singularities displayed in Table 1 is, to a
tions demonstrates compliance with the order of singularitiegree, that expected. For a point force, integration of the
for point loads given in Table 1. Analogous solutions existactions acting on the surface of a small sphere of radius
for isolated force problems in two dimensions, namely: theentered on the point of application produces a product of
line load in an infinite elastic medium in MicheflB], the stresses withr?: Hence the stresses can be expected to be-
normal line load on the surface of an elastic half-space bfve liker ~2 if a finite force is to result in the limit as
Flamant[7], the tangential line load on a half-space surface. 0. Similarly for a line load, one anticipates stresses which
in Boussinesq[8], and line loads within a half-space inbehave liker 1. And the doublet states, being derivable by
Melan [9].? These may be found ibid, Section 2.2, and alsgifferentiation of corresponding isolated loads, then behave
demonstrate compliance with their singular order given s r 2 andr 2 in three dimensions and two dimensions,
Table 1. respectively. However, some care needs to be exercised if
Examples of doublet states are indicated in Fig. 1. ThRese expectations are to be realized in the limit by a se-
first of these(Fig. 1a) illustrates a means of obtaining aquence of finite stress fields acting over regions of finite
concentrated momerl. This moment is produced by tak-extent—a limiting process for producing singular loads that
ing the limit asé—0 whered is the horizontal separation ofis physically appealing. Sternberg and Eubajky gives a
two vertical forces of magnitudé =M/é. The second ar- clear account of the sort of restrictions required on the finite
rangement(Fig. 1b) is a dual of the first and realizes nostress distributions used in the limiting process: These re-
resultant force or moment in the limit @&- 0, yet does have strictions have since been refined in Turteltaub and Sternberg
a nontrivial stress field iF is ord(6~!): As a consequence,[13]. In essence, Sternberg and Eubanks establish that it is
it requires a generalization of the usual notion of a load insufficient to simply have the distributed fields be statically
terming it a “singular load.” The third arrangemeffig. 1c) equivalent to the end stress resultant sougbtKelvin origi-
is a center of compression produced by superposing the sealy proposed for his problemIf one merely makes this
ond in an angular array: It, too, represents a load in a genggguirement, then it is possible, for example, to add a doublet
alized sense. A precise definition of doublet states in genesgte of the kind in Fig. i to a point load problem, thereby
is given in Sternberg and Eubankkl]. Some closed-form changing the dominant singularity of the latter without alter-
solutions for doublet states in three dimensions may be fouind) the force exerted. One means of avoiding this additional
in: Love [12] Article 132, Sternberg and Eubankgl], Tur- field for the point force example is to require all the distrib-
teltaub and Sternbeid 3], Chowdhury[14], and Cher{15]. uted stresses in the underlying limiting sequence be unidirec-
Closed-form solutions for doublet states in two dimension®nal; alternative restrictions for the point load, as well as
are available in Lov¢12] Article 152, and Timoshenko andeffective requirements for other singular loads, are given in
Sternberg and EubanK41] and Turteltaub and Sternberg
2An error in one of the formulas given in Meld8] is corrected in Kurshifi10]. [13]. Provided proper attention is paid to the generating se-



Appl Mech Rev vol 57, no 4, July 2004 Sinclair: Stress singularities in classical elasticity— 253

guence of the distributed loads acting on successivelyable 2. Some elastic stress singularities away from singular loads

smaller regions, all of the singular loads included in Table dingular point, Local configuration Singular stresses
have unique stress fields with singularities as indicat&®. 2 (r=0)  description at point (r—0)
therein. P, Crack tip in three-point-  ord(r ~?)
In practice, concentrated loads usually serve as Green’s bend specimen iy
) ; - . ) Interface crack tip ord(r ¥2cos@Inr)) &
func_uons in st_ress analy5|s_. T_hat_ls, they are superposed to in bend specimen ord(r—2sin(y In 1),
achieve a desired regular distribution of applied loads. Often, ' see Eq(1.3) for 7
this superposition is undertaken via numerical analysis. A P3 I::ge?tk?Ofchgr'%igggg ord(r )
demonstration of their use in this way occurs in integral p, Adhermg nylon tire at  ord(r *2cos@Inr)) &
equation approaches, such as the boundary integral equation pothole edge ord(r ~*2sin(zInr)),
i i i i i i i see Eq(1.4) for
meth'od which currgntly enjoys fayr!y wide application in . Edge of piston ring ord(r 073
elastllc stress analysis. In this role, it is of value. to undergtand pressed into cylinder wall
the singular nature of the concentrated loads involved in or- Ps Reentrant corner in ord(Tr~ 9
. . . . - —0.4 —0.0
der to design efficient quadrature schemes for their numerical , ?&ZZSJFZZﬁm;ymbber S;SEFFIOM)E) & ord(Fr %)
intggration. However, thes_e integrations_typically result in ~° tire on pavement
finite stresses. Then, one is not faced with the challenge ofP; Circumference of an ord(r %)

epoxy-steel interface

d_rawing physical iqferen_ces, with respect to structural i_nteg— P, Edge of a rough heavy ord(Inr)
rity, from nonphysical singular fields. On other occasions, block on an elastic slab
though, singular loads can be used to model highly localized Pe Edge of a smooth steel ord(Inr)

; . . . chisel on a wooden block
loading, such as under a knife edge in the three-point-bendp,, Submodel node with ord(Inr)
specimen of fracture mechanitsg, at pointP, in Fig. 2a). displacement shape

functions as boundary

In this instance, if a line load is introduced, it is merely as conditions

one of a set of three which effect an applied moment for the

crack. As such, it is not the feature of greatest interest, lo-

cally, with respect to potential failure—the crack tip B,(in

Fig. 2a).° Again, one is not faced with interpreting local As a modification to the first example, we consider the

fields at singular loads. On the other hand, one must atte%te now to be comprised of two distinct elastic materials

this task for the crack, with its classical, inverse-square-rogsiead of a single one. The two are perfectly bonded to-

stress singularity. Indeed, in general this is the case for giher on an interface extending straight ahead of the crack

secqnd class of singular configuratior)g recognized here. Afidicated by the dashed line in Figa)2 Adding the further

cordingly we focus on stress singularities which occur awgyscontinuity of an abrupt change in material properties ren-

from any concentrated loading throughout the remainder @é(s the crack-tip stress singularity more nonphysical, with

this review. the inverse square root having multipliers, eps(r) and
sin(zInr), which oscillate an infinite number of times in the

1.3 Examples of other stress singularities limit r—0 whenn# 0. Hereiny is a material constant given

Some illustrative examples of this class of singularity a#%y
depicted schematically in Fig. 2. The corresponding orders of 1 pqt+ Ky
stress singularity present are set out in Table 2. n
The first exampléFig. 2a) is the aforementioned cracked
elastic plate under three-point bending, with its attendaiyNere x is the shear modulusx=3—4» or (3—»)/(1
inverse-square-root, stress singularity reflecting the stress i) for plane strain or plane stressbeing Poisson’s ratio,
tensification at the crack tigie, at P,). For the case of a apd the sub_scnpts distinguish the dlﬁerenF materials on each
crack in a large elastic plate under transverse tension, suchi@g Of the interface crack. Observe that if the materials are
singularity can be extracted from the corresponding solutiéfken to be one and the samgs=0 and there is no oscilla-
for the elliptical hole on passing to the limit as the hol&ry multiplier, as in our original example. Otherwise, typi-
becomes a mathematically sharp slit. The fields required §8lly interface cracks have oscillatory, inverse-square-root,
take this limit were first provided in KolossoffL7] (see also Stress singularities, as first shown in Williafl].
Kolossoff [18]), and subsequently derived in Ingl[49]. A related pair of examples concerns a tire, under light
That the same singularity results for crack tips in generdp2d, where it meets a relatively stiff pavement at the sharp
and for the crack tip in the three-point-bend specimen of Fi§dge of a potholéa section through such an arrangement is
2a in particular, can be discerned from Williams’ semina$ketched in Fig. B whereinPs is the point of interest If
paper[20]. In this paper, the asymptotic character of elasti@ie pavement is icy, and thereby lubricated, the situation is as
stresses in angular plates or wedges under extension isitéde tire were an elastic half-space being indented by a flat,
vealed: Letting the angle of the “free-free” wedge go to 2 frictionless, rigid strip. The solution to this problem was first

in Williams [20] recovers singular stresses as in Table 2. given in Sadowsky22], and exemplifies the inverse-square-
root stress singularity listed in Table 2. That the singular

v, . gharacter here is the same as for the crack in a homogeneous
If instead the stresses under the knife edge were of greatest concern, better models™ . X
than a line load are available, as we demonstrate subsequently. material can be argued as follows. First we note that, for a

= |n=/———-"¢ 1.3
2™ pot Kopg (13)
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Fig. 2 Some singular configuratiors) three-point-bend test piece of fracture mechartiyssection through a tire on a relatively rigid
pavementg) section through a piston with a ring pressed into a cylinder wialkection of a shaft with a stress-free keyway under torsion

and lateral loadinge) adhesive butt joint under tensioh) rough heavy block sticking to an elastic bagg,steel chisel just starting to
indent a wooden slalh) displacement shape functions as submodel boundary conditions
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2D elastic half-space, the constant displacement due to tieneral, as the angle at a reentrant corner increases, singu-
rigid strip can be recovered by a rigid body translatiorarity strength reduces. Eventually, when a stress-free corner
Hence, we need only consider homogeneous conditions wpens all the way up to a half-space, singular stresses are
der the strip, together with stress-free conditions outside themoved.
strip. But these conditions under the strip are the same asThe disappearance of stress singularities once corners are
symmetry conditions. Thus the half-space can be reflectedmm longer reentrant need not be the case when the boundary
itself to produce a full space with a pair of stress-free cracksnditions are mixed, as is demonstrated in our next ex-
outside of where the strip punch acts. ample. This concerns the tire agdkig. 2b), but now where

For the second of our examples concerning the arrangemeets the pavement at its outside edigg at Pg). If the
ment in Fig. D at P3, we consider the pavement to be dryire adheres perfectly to the relatively rigid pavement, locally
and the tire to stick to it perfectly. Now the in-plane situatiofthis configuration becomes a right-angled corner in plane
for the section of Fig. Ris as if the tire were being indentedstrain with one face being free of stress, the other completely
by a flat, adhering, rigid strip. The solution to this problenfixed. The singularity in this instance is characterized in
was first furnished in Abramoy23], and contains the Knein [28]. Alternatively, it may be obtained using the
inverse-square-root stress singularity, with its oscillatorylamped-free” conditions in Williams[20] for a wedge
multipliers, listed in Table 2. This is the same singularity agngle of only«/2, provided these are adapted to a state of
for the interface crack, except that nowis given by Eq. plane strain. For rubberv0.5), the stress singularity of

(1.3) with pp—co therein. That is, Table 2 resultsthere is a minor round-off error in the singu-
1 larity exponent in Kneiri28]). While this is weaker than that
7= 2—|n K (1.4) of a crack, it is nonetheless quite comparable in strength.

a

A similar situation occurs for the butt joint under tension
Recall thatk=3—4v for the plane strain state applicabIéDf Fig. 2e. Herein the points of interest are where the inter-
here: So as to avoieg=0, Table 2 specifies a nylon tires( face between the epoxy adhesive and steel adherend meets
=0.4) rather than rubber 0.5) for this case of adhesivethe outside free surfadeg, P7). As for the piston ring, this
contact. Asymptotically, the configuration can be treated ugonfiguration is axisymmetric but nonetheless plane strain
ing the “clamped-free” conditions for a wedge of angtein analysis still applies. Again then, since steel is relatively
Williams [20], if one sets " =vin Eq. (17) therein so as to rgid compared to epoxy, a “clamped-free” right-angled cor-
correspond to a state of plane strain. The same singulaf§f in plane strain is appropriate and can be treated via Wil-
results. liams[20]. Taking 3/8 as a reasonable estimate of Poisson’s
A further contact example is that of a lubricated pistofatio for epoxy, this gives the singularity of Table 2. The
ring pressed into a cylinder wall as indicated in Fig. Phis reduction in strength here from that of the rubber corner is
configuration is axisymmetric rather than being as previo@sie to the lower value of. Indeed, there is no singularity for
examples which entail states of plane strain. However, 8dch corners when=0.
first argued in ZaK24], a plane strain analysis still applies. Our last three examples give rise to the weakest type of
Then, if the ring is taken to be relatively rigid compared tétress singularity in elasticity, the logarithmic singularity.
the cylinder, the same inverse-square-root singularity resultge first example concerns a heavy rough block, under a
as for an indentation with a flat, frictionless, rigid stfifig. lateral force, sticking to a horizontal elastic surfdEeg. ).
2c at P,). Alternatively, if the more realistic assumption igf one assumes that the normal stresses produce a disconti-
made that the ring is comprised of the same material as thgity in the surface shediie, at Pg, as indicated in the
cylinder, the weaker singularity of Table 2 results. This sirslose-up, then a log singularity in the stresses occurs, with a
gularity can be identified by solving the pertinent eigenvalugoefficient that is proportional to the magnitude of the shear
equation in Dempsey and Sincla5]. It is weaker because stress discontinuity. This result is given in Kolosspif].
now the deformation of the ring is being included. Alternatively, it can be constructed using auxiliary fields to
For the example of a stress-free keyway in a shaft undéose in Williams[20]. These fields may be found in Demp-
torqueT and transverse load (Fig. 2d), multiple singulari- sey and Sinclaif29]. While the normal stress discontinuity
ties are presen(Table 2. For the torque, the singularity ac-produces no stress singularity, any shear stress discontinuity
tive at the 90° reentrant cornée, atPs) is weaker than if a on an elastic half-plane does. To see an indication of why
crack is subjected to torsion, having an exponent of 1/3 cotttis is so, consider the shear stress components on the two
pared to 1/2. This singularity was first identified in Thomsolittle square elements outlined by broken lines in the close-up
and Tait[26], Section 710. For the transverse load, two siref Fig. Z. The left one is in force and moment equilibrium if
gularities typically participate. The stronger one is associatéchas no shears on its boundaries. The right one, constant
with loading which is symmetric about the bisector of thehears. Where they meet, there is an incompatibility in shear
angle at the reentrant corner, the weaker with antisymmetritress which cannot be accommodated by any regular elas-
Both are weaker than the singularity at a crack, a reentraitity fields known to date.
corner of zero angle in effect. The two singularities for this The second example concerns a piece of wood, just start-
right-angled reentrant corner are included in Brd@. Al- ing to be indented but not yet cut, by a sharp chisel made of
ternatively, they may be obtained using the “free-free” correlatively rigid steel(Fig. 2g). Assuming the contact to be
ditions in Williams[20], on taking a wedge angle of#8. In frictionless and ignoring any anisotropy in the wood, the
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log-singularity stress field induced at the cutting eigeat is somewhat disconcerting: Such a workweek does not make
Pg) may be found in SneddofB0], Section 48.4. Again, for a great weekend. More importantly, such a structural ap-
alternatively it can be constructed using the auxiliary fieldsraisal has nothing to do with the component’s actual struc-
in Dempsey and Sinclaj29]. This log singularity features a tural reliability: In the presence of a singularity, any suffi-
coefficient which depends on the chisel tip angle and is proiently refined numerical analysis predicts failure when peak
portional to the elastic moduli of the wood. It also has stresses are compared against some finite stress criterion, ir-
displacement field which is more physically applicable teespective of what is physically happening. Under such cir-
initial knife-edge loading than that of a line load, being freeumstances, the participation of the singular stresses must
of unbounded vertical displacement and overlapping hofitst be recognized if any real use is to be made of the analy-
zontal ones. sis. The main aim of this review is to aid in achieving such
The third example concerns the use of displacement shageognition.
functions as boundary conditions in submodeling in finite That said, we next turn our attention to the important and
element analysigas suggested in ABAQUS31], and AN- challenging task of interpreting singular stress fields once it
SYS[32]). Along a smooth submodel boundary, spurious log apparent that they are active. In taking up this challenge,
singularities can be introduced. An example involving fouye begin by considering the simplifications made in classical
node elements is shown in Figh.ZTherein a log singularity elasticity since we expect singularities to be a product of the
occurs at the node &;, whenever there is a discontinuity inmodeling in the theory, infinite stresses not being possible
the derivatives of either of the boundary displacemeats, physically. Three such simplifying assumptions or lineariza-
andv ony=0. That is, whenever the constants are such th@ns can be identified in the classical theory of elasticity.
c, #C) or ¢, #c, . Fields are given in Sinclair and EppsThe first linearization has that the relationship between
[33]. stresses and strains is linear; that is, the stresses do not ex-
ceed the limits of elastic material response. The second lin-
1.4 What to do about stress singularities earization has 'Fhat 'fhe strains depend linearly on _the dis-
_ ~ placement gradients; that is, the displacement gradients are
The foregoing serves to demonstrate some of the variety @fa|. The third linearization has that all loads act on the
singular configurations and stress singularities possible \ijgeformed shape throughout the entire loading process; that
classical elasticity. The natural question which then arises;is ihe deflections are small. The singular stress fields of clas-
what is to be done about these and like configurations §. elasticity are in violation of all three of these assump-
attempting to ensure structural reliability? In the first Nfons. Yet they do comply with all of the field equations of
stance, it is vital that the stress analyst at least recognig@sticity, as may be established by simply substituting them
when a stress singularity is presént. _ _ into these equations. This seemingly paradoxical situation
That there is a singularity present is not always immedizgits from the fact that, once an assumption is made in the
ately obwo_us. T_hls is especially s0 in the stress analysis ory of elasticity and equations so simplified, compliance
actual engineering components, since frequently the COfi, the assumption becomes unpoliced by the theory itself.
plexity of suc_h c_or_1f|gurat|0ns necessitates numerical regtis allows singular stress fields to comply with the field
ment, often via finite element analysﬂEEA). Under these ?quations of classical elasticity, but remain in defiance of the
circumstances, one does not have available analytical s iderlying and unpoliced assumptions of elasticity. Such a
tions whereby singular character is detectable simply by 0f ation requires some care if one is to be successful in

servation. Nevertheless, it remains essential that the presefﬁ‘fgrpreting these fundamentally wayward fields in a physi-
of any singular stress field be appreciated. cally meaningful fashion.

th Cons'![der thgb;alte(;na’tl/lve. dA scenario Sll"cth an. fOt”:\I'EVZ 'S To demonstrate the difficulty of interpreting results when
€n quite possibie. Un vionday, you complete a irs ?ﬁey lie outside of admissible responses in a theory, consider

a component subjected to cyclic loading. The maximu e following beam example taken from Frisch-F&y]. On

t
s:ressesff?hund are a fa(i,tor ofttvyol Iejs than tlhz er;ﬁutratE%%e one of his monograph, Frisch-Fay considers a horizon-
stress of the components matenal. You conclude hal W& . ilever beam of length 2.54 (100 incheg with a

component has indefinite life, or "’?t least _Iong Iife. orI]Jending stiffness of 2.87 Nfn(1000 Ibfirf), subjected to a
V\(/a?kngtsr 22&3’2‘#;:33‘%%ra'r:aEtﬁeV:gr;hZ (raer:((ljnuergn?:gd.YIS\?aerrgcal concentrated end load of 4.45NIbf). Treating this
iF:1 somewhat of a uandarp as to how much life tHe al?team within the context of classical beam theory for small

quancary b deflections, Frisch-Fay obtains a prediction of a vertical tip
reall'y has. Henpe, on Friday you complete a further FEA 0J‘eflection of 8.47 m(333 inchey or more than three times
a still more refined mesh. Now you get stresses that A3 beam's original length. This result suggests strains of the
factor of two greater than the endurance level. The compo-

o . - L . order of 300% and the possibility of gross yielding and even
nent’s life now is, apparently, distinctly limited. Life for YOU 4 ctile rupture. Subsequently, on page 39 of Frisch{Bay,

the same beam is analyzed within the context of nonlinear

“We have not included, in the examples of Table 2, the yet stronger, or(singu- ; ; P ;
larity occurring at dislocations of the \olterra tyjgsee, eg, Lové12], Appendix to beam theory fo_r Iarge deﬂeCtlonS_' This analySIS res_ults ina
Chapters VIII, IX, or Timoshenko and Goodigk6], Articles 34, 117. These fields are vertical deflection of 2.06 n(81 inche$, together with a
used as Green’s functions, and by some theoreticians in an attempt to model mi‘f’,?jrizontal deflection of 1.42 I"(56 inChe$ and stress and
structure. We omit discussion of them primarily because we expect users to be ful i X : . ! i

cognizant of the singular character present. s)(/raln fields that can now comply with the underlying as-
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sumptions of the theory. The beam’s length is essentialiijtions which have extraneous discontinuities. Then
unchanged, in contrast to the earlier and potentially quitemoving such discontinuities removes the singularities.
misleading prediction. It follows that, in this instance, all one In other instances, smoothing discontinuities might also
can reasonably directly conclude from the prediction of clagppear to remove singularities. For example, rounding the tip
sical, small-deflection, beam theory is that the deflection @ a crack(as atP, of Table 2 and Fig. &), or rounding the
large, too large to be quantitatively predicted by the theorgorner in a keywayas atPs of Table 2 and Fig. @), does
In essence, the same situation holds with respect to the gimeduce finite stresses. This tactic for the latter example was
gular stress fields of classical elasticity. Typically, they arsuggested in Thomson and Ta®6] circa 1867, so such an
correct qualitatively in implying large stresses, yet quantitapproach is definitely not new. However, in instances such as
tively they cannot be relied upon for the magnitude of theskese two wherein the stress singularities reflect real stress
stresses. Other less direct interpretations must be madedmcentrations, such smoothing is questionable.
order to quantify the implications of stress singularities. How so? For the example of the crack, certainly there are
The preceding example also illustrates a possible strategy singular stresses with any root radius that is greater than
for dealing with stress singularities: namely, improving thgero. However, we know that for a root radius that is zero we
modeling in the underlying theory so that physically sensiblget the physical absurdity of infinite stresses. This raises the
outcomes are predicted. This is what nonlinear beam theejiestion of just how physically relevant are the finite but
did in the example, albeit at the expense of turning a lineaktremely large stresses that can result from extremely small
theory into a less tractable nonlinear one. Arguably, even@ot radii. Moreover, crack tips can have extremely small
the expense of requiring greater analytical effort, such infoot radii, so the question is not moot. And similar concerns
provements in the physical modeling represent the ultimad@ply to rounding of the keyway corner.
of “interpretations” of singular stress fields. Accordingly, we  The real removal of stress singularities requires that we
consider various means that might effect such improvemegn be confident that the unbounded stresses are being re-
next, in Section 2. Currently, not all configurations are ameiaced by physically sensible ones. For the crack and like
nable to complete amelioration of their singular stress fieldgnfigurations, this really means we want finite sensible
via the various means identified. Hence, in Section 3 Wgresses when root radii actually go to zero. Only then can we
review interpretations that can be made when singular hgs reasonably confident of the physical relevance of stress
havior persists. Then we return to our primary intent of helgields for root radii near but not zero.
ing a stress analyst appreciate when a stress singularity camt first thought, opportunities for achieving the removal
occur, and what its singular character can be. We begin thjsingularities when root radii are zero would appear to stem
activity in Section 4 with a description of some methods;om relaxing the constraints implicit in the linearizations of
both analytical and numerical, for determining the nature anghssical elasticity listed earlier. Perhaps the most natural to
participation of stress singularities. We then close Part | @fnsider in this regard is relaxing the assumption that the

this review with some concluding remarks. Part Il will fol-syresses remain below their elastic limits and, thereby, enter-
low with a review of contributions in the literature that haveyining the possibility of plastic flow. Such a relaxation is

actually carried out characterizations of possible local Si”gHUite often implied in the literature to be the appropriate
lar stresses for a variety of elastic configurations. Throughoilqurse to take when singularities occur in elasticity. In-
both parts, there are portions of the text that are tutorial fizeq if one insists upon perfectly plastic material response
nature. Because a significant amount of today’s stress anajyter elastic, unbounded stresses can be removed. Nonethe-
sis is carried out in industry and, in the main, by engineefsss introducing plasticity does not really effect a resolution

with bachelor's degrees, a serious effort has been madeyfohe gifficulties with elastic stress singularities, as we ex-
write these tutorial portions so that they can be understoB%m next.

by such stress analysts. To begin, introducing plasticity begs the question of how
to remove singularities for configurations involving materials

2 RIDDING CONFIGURATIONS that are not ductile. Leaving this omission aside, even for

OF NONPHYSICAL STRESS SINGULARITIES ductile materials it is not really appropriate. To see this, con-
sider what happens physically as loading progresses. At the

2.1 Possible avenues for removing singularities outset, loads are small. In fact, for any actual configuration

In some instances, removing singularities is straightforwardomprised of a material witlry>0, oy being the yield
For example, the logarithmic singularities induced by the us#ress, there exists a sufficiently light loading so that, physi-
of displacement shape functions as boundary conditions cally, no yielding whatsoever is produced. Yet, if the con-
submodels in finite element analysey, P,o of Table 2 and figuration of interest has an elastic stress singularity, the
Fig. 2h). These can be removed simply by fitting nodal digheory predicts yielding for any nonzero load, no matter how
placements in the global FEA preceding the submodel wigmall. Given the physical inappropriateness of the initial re-
curves that are once continuously differentiable, then usisgonse of plastic fields derived from singular elastic ones, it
intervening values in submodel boundary conditiéeg, by is not reasonable to assume that these fields correct them-
fitting a cubic spline as in Kondo and Sincl@B5]). In es- selves as plastic flow increases. Accordingly, one cannot rely
sence, all that is required here is an appreciation of the ion these fields to accurately capture the physics of the situ-
troduction of singularities by a poor choice of boundary coration.
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Thus, if this value or a lesser stress is chosen as a failure
criterion, failure is always predicted: If, on the other hand, a
higher stress value is taken, failure is never predicted. Such
stress-based predictions have no reliable correlation to what
is physically happening. Furthermore, one cannot rely upon a
strain criterion for this special type of material response,
since the strains remain singular—see the second of Egs.
(2.2), from Hutchinsor{37] (the same result may be found in
CherepanoVy36] and Rice and Rosengré¢a8]).

Other geometries share the persistence of singular behav-
ior when treated via deformation theory, though not all com-
ply with the second 0€2.2): see Chao and Yarig0], Rudge
and Tiernan[41], Zhang and Josepf¥2], and references
therein. It follows that introducing yielding and plastic flow
when a singularity is already present in the elastic response

does not remove the singularity in any real sense.
F Alternatively, one could consider relaxing the assumption
of small displacement gradients and, thereby, entertaining the
Fig. 3 Tensile crack in a hardening material possibility of large strains. Again, though, initially it is al-
ways possible to have actual load levels which are light
enough so that only small strains are induced physically,

There is a further impediment to the use of such estimategher than large. This raises questions as to how important it
of elasto-plastic response in structural integrity considds to include a large strain representation at such load levels.
ations. If the material being considered hardens at all aft®bserve, though, that in contrast to plasticity, the nonlinear
yielding, the stresses can be expected to remain singul@ntributions attending large strain representaticare
though with the strength of their singular behavior typicallpresentat low load levels, even if they are relatively small.
being abated. That this is so for the case of a crack is sho@onsequently, absent analysis, it is not clear how much re-
in CherepanoV36], Hutchinson[37], and Rice and Rosen-laxing the small displacement gradient assumption may
gren[38], within the context of total deformation theory ofremove/alleviate singular stresses.
plasticity. By way of specific example, we consider a tensile Turning to analysis then, the general finding is that large
crack tip(Fig. 3) in a material which hardens in accordancetrain treatments do typically improve the physical appropri-
with the model put forward in Ramberg and Osg¢86]. A ateness of singular fields, and even on occasion remove
law for uniaxial tensile stress; versus tensile strain, for them, but nonetheless result in the persistence of a number of

FI plasticity irrespective of load level, provided it is not zero.

Elastic plate

such a model is singularities. For the crack, results of this nature were first
—_— 1 [ oy\" indicated in Wong and Shieldt3], then established for more
— =t —— (2.1) general circumstances in the two successive papers, Knowles
Ey Oy 500 Oy

and Sternber§j44,45. Geubelle and Knaug46] provides a

whereinoy continues as the yield stress ang=oy/E is recent large strain treatment of cracks demonstrating persis-

the corresponding strain, wit being Young's modulus and tence of singular behavior, together with a review of the

n, the strain hardening exponent. Then, from Hutchinsairea® There and elsewhere, the® behavior ag —0 of the

[37] using the coordinates of Fig. 3, the normal stress aggack-tip stress-strain product is found to continue to be

strain ahead of the crack within deformation theory behaygesent(cf, the second of Eqg2.2)). On the other hand, a

in accordance with large strain treatment of the interface crack can remove the
Uyzo(x—ll(n;l)), aysy=0(x‘1), as x—0% nonphysmal oscnlator_y multiplier of the stress_ singularity

(2.2) noted in the Introduction foP, of Table 2 and Fig. & (see

L . Geubelle and Knaug47] and references thergirit can also
ony=0. Forn,=1, the classical inverse-square-root singu-

. Lo remove the oscillatory nature of the singularity for the adhe-
larity of elasticity is recovered. For<n, <o, the stress sive flat punch noted foP of Table 2 and Fig. & (Knowles

smgulanty Is weaker but nonethe.less Persists. .Hence ; Rd Sternberdi48]). Furthermore, it does remove the entire
futile to compare such stresses directly with finite materia

: singularity for the butt joint noted foP, of Table 2 and Fig.
values such as the ultimate stress or the endurance strzees Ru [49]). However, it does not remove singularities for
(recall the previous discussion in the Introducjion ' ' 9

For the special and physically atypical case of perfe? her bimaterial wedgeé.Ru'[49]), nqr for reentrapt corners'
plasticity post yield fi,— ). the crack-tip stresses are con' uva[50]). In sum, while introducing large strain analysis
strained to be finite but still cannot be compared in a mean-

ingful way with material values. This is because the stress}?] me of these references term themselves “finite strain” treatments. This term is to

R L erscore the contrast with the infinitesimal strains of classical elasticity: It does not
always locally attain the limiting value set by the perfeatply bounded strains at the crack tip.
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Fig. 5 Pressurized crack configuration

Fig. 4 Genesic Griffith crack configuration

improves the physical appropriateness of singular fields tgPgnetration or overlapping of material outside of the original
degree, this relaxation fails to fully remove them. contact region. If, instead, the two are allowed to contact
The remaining option for relaxation within the simplificafurther without interpenetration, the power singularity is re-
tions of classical elasticity is the small deflection assumptiofiuced to a log singularity which is similar to that for the
That is, removing the assumption that the loads act in théfisel indentation configuratiorPg of Table 2 and Fig. §.
entirety on the undeformed state. Relaxation of this assunifyhile this is a weaker singularity, nevertheless it is singular.
tion can be performed by applying loads incrementally adhus, this last relaxation also fails to really remove singular
deformation proceeds: In some sense, one may interpret ngfaracter once it exists in a classical elasticity solution.
linear beam theory as an implementation of such an ap-All told, none of the foregoing relaxations fully remove
proach. Griffith was first to do this for a crack in an infinitestress singularities when they exist in classical elasticity. Not
plate under all-round tensiom, (Griffith [51]). He formed to say that elasto-plastic/large strain/large deflection analysis
his crack of length @ as the limit as the semiminor axis, May not be appropriate on occasion once the removal is ef-
of an elliptical hole goes to zerdig. 4). For classical elas- fected, but that by themselves such analyses do not effect the
ticity, the maximum stress for the elliptical configuratiorfémoval. Needed is a different approach.
used in the limiting process occurs at the ends of the major What other options are there for improving the modeling
axis. This peak valuer,,y, is given by(from Inglis [19]) so that stress singularities are replaced with physically sen-
sible stresses? The answer lies in the boundary conditions
Tmax=Kroo, Kr=2a/b (2.3) enforced, both as direct requirements and as auxiliary con-
In (2.3), K7 is the stress concentration factor. On passing &raints. We consider some problems where singular stresses
the limit of a crack b—0), K blows up reflecting the stressare alleviated via this approach next.
singularity so generated. In Griffith’s incremental treatment

wherein loading is gradually applied, the corresponding 18- canceling crack-tip singularities: Barenblatt's ap-

sult is proach
E 200 a . 2oy We begin our consideration of the effects of more physically
KT=U—0In cosh E + Bsmh? (2.4) appropriate boundary conditions withackedconfigurations

hereE ins Y ) aul d a state of ol ¢ because of their central role in solid mechanics in general,
WRETEL remains voung s modulus and a state of plan€ SUY€RgRy factyre mechanics in particular. For such configurations,

is assumed.An anal_ogpus treatment for t.he. ellipse tending ;q possible to negate singularities produced by loading re-

FO a crack under uniaxial tensmn yields 3|m|Iar_r<fsuIts: Thmote from the crack with those due to tractions acting on the

E’ st;e;se'\ls aretr?r(li(lh) atshb—>0 |nstt_ﬁac_j of lordQ ) 85N rack flanks. Barenblatt credits Khristianovitch as being first
g- (2.9. Nevertheless, they are still singular. o notice this in his paper with Zheltov in 1955. In Zheltov

A further example of the effects of relaxing the smal, KhristianovitcH54], a large rock stratum comprised of

deﬂgctlon assumption may be obtam_ed on revisiting the P%A oil bearing shale is considered with a view to determining
ton ring configuration in the IntroductiorP, of Table 2 and when a pressurized flaw within the stratum might fracture.

Fig. 2c). Once the ring is allowed to deform along with theI'he stratum is under all-round presspgewhile the faces of

cylinder wall, the power singularity of Table 2 leads to Nelhe flaw near its tips are subjected to a relatively high inter-

nal pressure op; (Fig. 5. The configuration is treated as 2D
5Mansfield[52] derives the same result as Hg.4). The actual theory used in all of and elastic. Then. if the extent of the regions over Wm{)h

these incremental elasticity analyses is an approximate rate-of-deformation theery R R X
Truesdell[53)). acts,Aa, is taken to be an appropriate fraction of the total
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% sentative of the applied far-field tensile traction parallel to
they-axis: These tractions need not be uniform but are to be
symmetric abouty=0. Next, define the coefficient of the
singularity due toog, the stress intensity factdf,, in ac-

Infinite cordance with usual practice. To wit,

elastic
plate e K= lim \27xo, | (2.6)
; 0 - y=0

Xx—0

whereino is the normal stress component in ghelirection
induced byo alone. Now apply a pair of tensile line loads
to the crack flanks which are equal and opposite. These line
loads tend to close the crack. If their strengthFiger unit
thickness and they act on the crack flanks at a distance
| l ¥ from the crack tip, the associated stress intensity fastpr,

is negative and given b§Tada, Paris, and Irwif55], p 3.6

So
Fig. 6 Barenblatt's crack tip K/=—F /i (2.7)
X

Introducing cohesive stresses= o(Xx) by replacingF by
flaw width, 2a, the compressive stress singularity duepgo ocdx, then integrating, gives the negative stress intensity
is cancelled by the tensile stress singularity dup;toMore induced by the closing tractions: Equating the resulK{o

precisely, if the factor due to the far-field loading,, then renders the
configuration singularity free. That is, there is no crack-tip
ﬁzsinz TPo (pi>Po) (2.5) singular stress field if
2a 4p; i ro '
then there is no singularity for the configuration of Fig’ 5. = E % 0oX
K, (2.8)
Subsequently, Barenblatt appreciated the fuller implica- mJo x

tions of Zheltov and Khr|s,_t|anovng[154] (Barenblat 56)): here &, is the extent of the cohesive zone. Under this con-
An extensive account of his resulting research, together with). . )
. . ion, the crack opening profile forms a cu&ee close-up
a comprehensive bibliography of related work, may be foun0 Fig. 6. with a crack opening displacement,on y=0
in Barenblat{57]. To extend the applicability of Zheltov and 9. 9 P g disp ony

o . X . >
Khristianovitch’s model, Barenblatt introduces cohesive no x>0), of the form

mal stresses to replace the applied presgureEssentially, 1+« x3\ 112 . N
he argues as follows: v| = WUC N +0(x) as x—0
i) that the heights of cracks are small relative to their gg x=0
lengths so that they can be approximated by (2.9)

mathematically-sharp slits.

ii) that under such circumstances, the immediate proxi
ity of the crack flanks at the crack tip ensures th
intermolecular cohesive stresses act between the flantk .

Iw_hereinu and«x are as previouslyEqg. (1.3) et seq, andL is
normalizing length. The companion tensile stress ahead of
crack tip is given by

iii) that the distribution of such cohesive stresses can be x|\ Y2
adjusted so that the corresponding compressive singu-oy | =0¢ [1— (T +0(x*?) as x—0~
lar stress field completely negates any tensile singular y=0 x=0
stress field due to far-field loading. x<0 (2.10)

Barenblatt assumes that the extent of the near-tip zone in ) ) _ i
which cohesive stresses are applied is small relative to thtearly the crack-tip stress of E(.10 is free of singulari-
overall crack length. Indeed, in a first implementation of hi4€s- » . . . )
ideas for a specific crack configuration in Barenbl&f], he In addition to introducing cohesive stresses and assuming
considers a semi-infinite crack with a finite cohesive zor{8€ region over which they act is small, Barenblatt makes a
(Fig. 6): Hence, in effect, his cohesive zone is infinitesimdHrther ad hoc assumption regarding their distribution. This
compared to the crack length. Even so, the cancellation $cond assumption has that the maximum possible value of
singularities can be effected, as shown next. the right-hand side of Eq2.8) at failure does not depend
First, take rectangular Cartesian coordinatesy, with UPOn the applied loading,, and is always the same for a
origin O at the crack tip, as in Fig. 6. Then let, be repre- given material. He terms the right-hand side of E2}8) at
failure a material’s “modulus of cohesion” to reflect his as-

"The result in Eq(2.5) follows directly from the singularity coefficients given in Tada, sumpt!on that. it is a material property. This S.In:]p“fymg .as-_
Paris, and Inwir{55] on pp 5.1, 5.13. sumption obviates the need to determine explicitly the distri-
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bution of cohesive stresses within the cohesive zone, not an o,

easy task at the time of Barenbl§f6,57]. However, it has

two serious drawbacks. v
First, an immediate consequence of the assumption is that

the stress intensity factor at fracture due to any applied load-

ing such asrj is also a material property, because it equals

in magnitude that due to cohesive stresses. Essentially, there-

fore, the stress intensity factor due to applied loading be-

comes the key parameter controlling fracture. This is the 0

same fracture criterioras used in models whesingularities

are present(see subsequent Sections 3.1 and.3Hence,

while Barenblatt does indeed cancel singularities for cracks

by introducing the concept of cohesive crack-flank stresses,

the manner in which he does so leads to an approach which

is equivalent to that practiced when singularities are active as ~ Fig. 7 Schematic of cohesive stress-separation law

far as fracture goes. Accordingly, Barenblatt's approach can-

not realize any practical improvement in fracture prediction

as a result of negating crack-tip stress singularities. 2.3 Removing singularities via boundary conditions:
Second, the assumption is not realistic. To explain, Cofkiroducing cohesive stresses

sider its analogue in elasticity in general. Taking the stre

; it f tail iting f hesi i the approach adopted here, we endorse Barenblatt’s argu-
intensity factor at failure resulting from cohesive stresses gg, . yat when surfaces come into extremely close proxim-

a material property would be akin to taking local stress reg, ith one another, cohesive stresses have to act. We also
sultants in elasticity as material properties. This is not so. {fo,y Barenblatt in taking this interatomic action to be mod-
elasticity, it is the elastic moduli that are the material propsieq with boundary conditions in continuum mechanics,
erties. While local stress resultants can depend on the Va'W?éreby facilitating analysis. We do not, though, accept any
of such material properties, they can also depend on loadiggBarenblatt's assumptions concerning cohesive stress dis-
and geometry and so are not material properties themselMgigutions. Rather, we introduce cohesive stresses via cohe-
With cohesive stresses, then, it is the cohesive stresgre stress-separation laws and let these laws interact with
separation laws that are material properties, not the strgiss configuration of interest to determine cohesive stress dis-
intensity factors that can attend these laws. tributions. Initially, we treat cracks with the approach, then
It is possible to extend Barenblatt's approach and canaeé treat other singular configurations.
singularities with cohesive stresses in other otherwise singu-To begin, the nature of the cohesive stresses to be used
lar configurations, albeit with the same drawbacks. For ewserits further discussion. &ohesive stress-separation law
ample, the keyway configuration in the Introductidds(of for the normal stress at a single point on the surface of one
Table 2 and Fig. @). It is not clear, though, how it could be€lastic half-space as it is being removed from a second is
extended to all of the other examples in the Introduction. sketched in Fig. 7. The initial response there exhibits a steep,
In sum to date then, modifying the field equations of elagearly linear, increase in cohesive stresswith separatiors
ticity would not seem to offer any real means of removingoove the equilibrium valus, . Thus, ass first exceeds,,
stress singularities. On the other hand, what we learn from 0.=Ke(S—Se) (2.11)
Barenblatt[57] is that incorporating cohesive stresses into
boundary conditions can remove singular behavior. Cohesi/gere ke is the separation stiffness near equilibriuthe
stresses have also been used in this way to render model§@thed line slope in Fig)7After reaching an ultimate value
dislocations free of singularities: Such models have been gl : 9c gradually decays to zero asbecomes large. The
forward in Peierl§60] and other paper@ee Hirth and Lothe overall c'har.ac.ter of the cohesive stres§ versus separation re-
[61], Chapter 8 It would therefore appear that cohesivéPONSe is similar to thgt for the a';tractlve force versus sepa-
stresses might play a major role in the alleviation of singi2ion response for an isolated pair of atoms or molecules. In
larities. Moreover, cohesive stresses are fundamental to séﬁﬁt’ physically it is the result of an integration or combina-

mechanics, being the underlying source of constitutive relion of S_UCh force-sep_aratlon_respopse_s. I
tions. In contrast, it is not obvious that there is any funda. Carrying out such integrations via first-principle calcula-

S . . ; tions is a challenging analytical task. However, for the first
mental justification for making assumptions regarding their . :

S . art of the curve—the linear stress-separation law—we can
distributions. Consequently, we next look to consider an ap-

roach for including cohesive stress action without such imply estimate the response of the accumulation of atoms or
Eumptionsl uding v 1on without SUCh a8 ecules directly. To do this, we obtain and fit the bulk

response in experiments so as to back out cohesive law stiff-
nesses. For example, to use a uniaxial tension test to deter-
8willis [58] and Goodief59] provide alternative arguments that, as a result of hi

assumptions, Barenblatt's approach reduces to the same as for cracks with singulari ielg]e ke of Eq (2'1])’ . reconsider Flg' @ with the ep_oxy
present. replaced by linear springs that are supposed to replicate the
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initial cohesive law for steel. Then matching the response
from the springs with that for a solid steel bar gives

ko= E/S, (2.12)

For Fig. 2, E would be Young’s modulus for steel: In gen-
eral,E is Young's modulus for whatever material is involved.
Hence for uniaxial tension, our initial cohesive law is Eq.
(2.17) with k. as in Eq.(2.12). A consequence of this means
of estimatingk, is that the initial cohesive law passes what
might be termed a “patch test” and is consistent with the
surrounding continuum.

The foregoing is a possible, even if somewhat crude, pro-
cedure for estimating, in the elastic regime since material
defects in bulk specimens do not have a marked influence on
response in this regime. At higher stresses, though, we can- (c) (d)
not employ such an inverse approach because material de- _ o
fects do produce significant effects. For present purpos 9. 8 Sketches of atomic or molecular "springs” at a sharp

h th ind f th . t critical si crdck-tip for various boundary conditiona) classical stress-free
owever, the remainder of the curve 1S not critical since V\{:%nditions,b) Barenblatt's cohesive stress conditionpconsistent

are primarily concerned with elastic response. Accordinglyghesive stress conditions) alternate cohesive stress conditions
we adopt the highly idealized assumption of a perfect,

defect-free, brittle material. Then there do exist estimates
from solid-state physics of a material's ultimate strésse,

eg, Cherepanof62], p 36, which givesr,~E/10). We can While the foregoing describes a greatly simplified ap-
also set the area under the curve—the work of adhesion—fiach for determining cohesive stress-separation laws, it
twice the surface energy, another material property for whiguylffices for the discussion that follows here. We next com-
estimates can be obtain¢ihid). Regarding the decay ratespare various treatments of the symmetrically loaded math-
ass—o, we can just directly integrate that associated wit@matically sharp crack with and without such cohesive laws.
pair-wise atomic or molecular forces, ignoring other interac- The traditional conditions on the crack plane for the
tions. For example, the potential of Lennard-Jof@3] for ~stress-free mathematically sharp crack under symmetric
van der Waals’ forces at large separations has them decayiNtpde ) loading are:

as 18’ ass—: Direct integration then gives, decaying

as 18° ass—x (see, eg, Israelachvi[i64], Section 10.2
Such a derivation does not properly account for interaction
and shielding effects, but suffices here.

The choice ofk, so that it is consistent with thk, im-  where thex andy rectangular coordinates are as in Fig. 3,
plicit in the elastic constitutive relations of the surrounding-, and Tyy Are normal and shear stress components in these
continuum offers some attributes in elastic stress analysiscordinates, and is the displacement in thg-direction. In
demonstration thereof follows on reconsidering the problegayntrast, recognizing that for the mathematically sharp crack
of a circular hole in an elastic plate under all-round far-fieldohesive stresses must act as Barenblatt did, then inserting
tension(Fig. 4 witha=b therein. The classical solution to them via Eq.(2.11), the conditions on the crack plane are:
this problem is given in Lamg65], Article 80. It features a
K+=2 for the hoop stress at the hole’s edgee Eqs(2.3) oy=Ke(v"—=v7), 7,=0, for x<0
with a=b). However, in this solution, if one sits at the edge
of the hole then takes the limit as the hole disappears, one?=0, 7,y=0, for x>0 (2.14)
obtains the physically anomalous result of the persistence\lg\l|
this stress concentration even when the plate becomes th
without a hole. What is needed to remove this anomalo
result is the recognition thatohesive tractions must aon
the hole surface as it closes. When the hole is very small, |
associated cohesive stress-separation law takes the form
Eqg. (2.11). Then, provided the stiffness therein is taken so Ater

to be cc()jr)3|stenttywth the el?sttlc c;onsl?tutlvgrel_atll?ns .Of tr}:e()nditions hold aty=s,/2 for the upper crack flank ang
surrounding continuum, a state ot uniform biaxial tension IS —s./2 for the lower. That is, through the centers of atoms

recovered throughout the plate when the hole disappe@[ﬁnprising the bottom surface of the upper half-space, the

(Sinclair and Med466]). top of the lower. To be consistent then, we should view con-
ditions ahead of the crack tip as applying at the same loca-

°This assumes there is no activation energy or other impediment to closing the hole.: i ; _
there were, the closing cohesive law would have to be modified. Nonetheless, a cmé—ns for their respective half spaces. As a result, EZ]S.@

sive law would still have to act as the hole closes. and(2.14 must have a cohesive law ahead of the crack with

Ty= Tyy= 0, for x<O

v=0, 7,,=0, for x>0 (2.13)

erev? is the displacement of the upper crack flank,

&t of the lower(ie, == v aty= *s4/2). Settingke="0 in
\é%s.(2.14; give Egs.(2.13. In effect, therefore, traditional
onditions overlook the cohesive interaction between the
Shks that physically must occur.

hat now becomes apparent, once we start to introduce
atomic considerations, is that wher 0, the boundary
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an infinite stiffness fo™=v~ =0 there, as required by the l l l l l
second of Eqgs(2.13 and(2.14). This situation is indicated T T T T T
schematically in Fig. & andb, wherein circles represent at-
oms and springs with stiffnedsrepresent cohesive laws. (a)

A more consistent introduction of cohesive laws for the
mathematically sharp crack under symmetric loading takes,

on the crack plane, Q e; s
oy=ke(v* —v7), 7y=0, for all x (2.15) Tl

Then the same cohesive law acts throughout, consistent with (b)
the same material comprising the half-spaces both in front

and in back of the crack tigFig. &).
An alternative crack-tip configuration sometimes imple- Hi;#
mented in the literature just inserts the cohesive law ahead of t

the tip while maintaining stress-free crack flanks. The condi- ©)
tions on the crack plane for this type of crack tip are:

Fig. 9 Crack flank configurations when introducing cohesive
Oy= Txy™ 0, for x<0 stressesa) mathematically sharp crack) stress-free cracke)

0'y=ke(v+—v7), 7y=0, for x>0 (2.16) intervening crack

Now, in effect, the cohesive law in back of the crack tip has

zero stiffnesgFig. &d). For this choice to be physically jus- In Sinclair et al[71], cohesive laws are taken to act
tifiable, appropriate arguments from solid state physics neéoughout the length of the mathematically sharp crack at
to be made. Presumably such arguments reflect a historytR outset before any external loading is appliedy. 9a).

the crack flanks which, at one time, had them at significanth}'@t iS, N0 assumption is made that cohesive stresses are

greater separations than for the mathematically sharp cra anln_ed o a _small_ region near the Crack_ up, bUt rather the
For Egs.(2.13 and (2.14), with their effectively infinite Cohesive law itself interacts with the configuration to deter-

. ) " o ) ine cohesive stress distributions. Not surprisingly, this not
stifinesses, singularities result. This is shown asymptotically,y jeads to finite stresses but also to a stress concentration

in Williams [20] for the traditional conditions, and in Sinclairfactor of unity for the mathematically sharp crack. This has

[67] for Barenblatt's condition? Indeed, for Eqs(2.14 a to be the case when the cohesive law is made consistent with
singularity is necessary if cancellation of singularities is tthe surrounding continuum because then the continuum
be effected as in Barenbld®7]. For Egs.(2.15 and(2.16), never knows the mathematically sharp crack is present. How
with their absence of infinite stiffnesses, no singularities ré it, then, that the real stress concentration occurring at crack

sult (Sinclair[67]). For Egs.(2.15, no singularity is clearly tips can be reflected by this type of modeling? .
the result to be expected, there being no discontinuity in 1h€ answer lies in treating cracks that are not mathemati-

either boundary directions or conditions. cally sharp. One way of doing this is to proceed as in Griffith

Thus, the presence of effectively an infinite stiffness in [%1] and form cracks via elliptical holes in elastic plates.
cohesive law is what is the underlying source of the singl€n two types of configuration can be distinguished. The
larity for the mathematically sharp crack under symmetrf¥st has stress-free crack surfacésg. %). This occurs
loading. The situation is akin to contact/impact in rigid bodyhen the root radius, of the elliptical hole is sufficiently
dynamics. There, rigid bodies with their infinite stiffnesselgrge. Here, by sufficiently large is meant such that the first
lead to infinite contact forces. Once deformation is admitt?ir of atoms or molecules on opposite flanks at the tip are
and finite stiffnesses introduced, finite contact forces resuigParated by a sufficient distance so that the cohesive law
Likewise with only finite stiffnesses in cohesive laws, finitd{Self sets the surface tractions for this pair to zero. That is,
rather than singular stresses result for the crack. this distance is a sufficient number of multiples of the

At this time, the use of cohesive/adhesive laws in boung9uilibrium separatiors, so that the law of Fig. 7 has.
ary conditions in solid mechanics has seen quite widespread@ effectively (see close-up in Fig. . The second has
use. Sinclaif68] provides a recent bibliography: Most of thecohesive stresses acting near its (ifig. o). This occurs
references therein cancel singularities after Barenpfat}, when the root radius decreases from the minimum value re-
but some introduce cohesive/ adhesive laws ahead of cr&tired for stress-free flanks. Ultimately this configuration be-
tips instead. An early example of the latter type of impleme§omes the mathematically sharp crack as the root radius de-
tation is Cribb and Tomking69]. A fairly recent review of a creases still further. .
number of contributions of this ilk is furnished in Needleman Resulting stress concentration factors for stress-free
[70]. An implementation of Eqs(2.15 whenk, is backed cracks coincide with classicé{; (ie, as on the right-hand

out from constitutive relations is summarized in Sinclaigide of Egs.(2.3) plus one for transverse tension alpne
Meda and Smallwoo@71]. Thereafter, as root radii are decreased so that cohesive stress

starts to actKy fall below classical values. Ultimately for a
1%ere, by Barenblatt's conditions we mean E@14): While Barenblat{57] does not Small but nonzero root radius, the crack C|9$€S al’fﬁr of
explicitly give these conditions, they are nonetheless implicit in the approach thereldnity results, the same as for the mathematically sharp crack.
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Other erstwhile singular configurations can be render@#4 Removing singularities via boundary conditions:
singularity-free by similar means. Viewed from a cohesivdZnforcing inequality constraints

adhesive stress perspective, it is possible to identify effestternative modifications to boundary conditions which can
tively infinite stiffnesses in almost all of the examples ofemove stress singularities may be found in additional local
stress singularities given in the Introduction. Hence their sifhequalities that are physically required. We begin by dem-
gular nature. When cohesive/adhesive laws without infinitthstrating the way in which this occurs for sorsenple,
stiffnesses are introduced, these examples are rid of strgsionless, contact problems
singularities. The different types of frictionless contact entertained in
To explain further, traditional contact and clamped condihis regard may be distinguished by whether or not they are
tions are really simplifications of cohesive or adhesive cogenforming. Here, by “conforming” is meant contact which,
ditions. When exchanged for the latter, only two principdtom no load to full load, has the indentor and indented ma-
types of boundary conditions remain in planar elasticityerial share a common tangent as the contact region’s bound-
cohesive/adhesive conditions and stress-free conditiopsy is approached from outside. An example is a roller on a
When these last two types of boundary conditions act on gglatively flat surface, as occurs in roller bearings. Initially,
in-plane geometry which entails a vertex angleof = or before any loading, the contact region for this configuration
less, no power singularities are possik®inclair [67]). consists of a line through the contact pofdt (Fig. 10g).
When effectively infinite stiffnesses in cohesive/adhesiv@ubsequently, under loading, splits intoC andC’ as the
laws are removed on lines of symmetry or antisymmetry, ti§@ntact region spreadig. 1(). Throughout, contact is
examples in the Introduction all have< 7, hence no power conforming atC (or C’) in the above sense. A further ex-
singularities. Moreover, there are no log singularities fé¥mple is the closely conforming contact of a journal bearing
these two types of boundary conditions provided there are Which tends to produce a larger contact region under load
step discontinuities in shear tractions whers 7. This last (Fig- 1&). In contrast is a sharp-edged indentor or flat punch
requirement, in particular, means that one cannot implem&@ntacting a horizontal surface. This is an example of non-
the shear counterpart of Figd8or antisymmetrigMode 1) conforming contact at bot andC’ (Fig. 10d). _
loading of a crack if one is to avoid log singularities. It alsg M @ddition to assuming contact in the configurations of

means any shear tractions in contact problems with shA:r ' %r? IS fnctp:les; otr Eerfetcr;cly_luo?rlctateﬂ, we furtther”sm-
edges must go to zero continuously, even if very rapidl ify the exposition by taking the indentofshown vertically

outside of contact regions if one is to avoid log singularitieO.a:C:fedltaonge dr'lrgelgf'(\)/xesﬂsﬁh:tsstﬁE(azg]i[tggyo?re I';:S Isnt:‘i
Further explanation is given in Sincldir2]. ut-ot-p rect P !

While the introduction of cohesive/adhesive laws with ﬁgpplles. Then traditional local boundary conditionsCain

. . . . ., Fig. 1M, in terms of ther, § coordinates of Fig. 11, take the
nite stiffnesses and no shear jumps shows promise of riddi
elasticity of most if not all stress singularities, the implemen-
tation of this approach in toto faces some stiff challenges. gy=7,,=0 on 6=m
These principally stem from the determination of the appro-
priate cohesive/adhesive law. For example, consider the caséls=Uo. 7rp=0, on =0 (2.17)

of brittle fracture, arguably the simplest physical responsg, ~ o The first of Eqs(2.17 are the stress-free condi-

once the limit of elastic behavior is reached. For real matﬁbns external to the contact region. The second reflect

rials that behave in a brittle fashion, there is a question asjtRjentation by an amounti,=u(r) without any friction

what ultimate stress governs fracture in the presence of NQWnin the contact region. The local fields for Eqg.17)
finite but highly concentrated stresses. It is not likely to be agimit to being supplemented by their fully homogeneous
high a strength as the material's theoretical ultimate stregdunterparts, namely those for E¢8.17) with Up=0. Then
oy~E/10. Nor is it likely to be as low as the material'sye recover the classical boundary conditions for a ciatk
ultimate stress as determined using standard tension teglgs. (2.13), so that inverse-square-root stress singularities
o,~E/1000. In the short term, an estimate of the applicablge possible.

intervening value for a limited range of sizes might be made To remove the possibility of stress singularities, we adjoin
via direct calibration with test results. In the long term, thiphysically sensible constraints. These insist that within the
question is likely to require modeling of the material’s micontact region there can be no tensile contact strédses,
crostructure itself. In addition to such modeling issues comhile without there can be no interpenetration or contact
fronting the full implementation of boundary conditions wittbetween the indentor and the indented material. Thus we
cohesive/adhesive laws, companion analysis is now nonlirquire

ear, even in the elastic regime. And this analysis must be of
sufficient refinement to accurately capture the local stresses”
involved, with their high gradients. For the present, there- 5232 _
fore, we can expect to continue to face the longstanding chal-U7=Ro~ VRy=r® on g=m
lenges represented by singularity analysis and interpretation

even for configurations that could be freed of Singu|ariti§1éActually, adhesive stresses can supply tensile stresses within the contact region, but

X X i Or most interfaces these stresses are negligible. Joh&sjn Section 5.5, has an
with cohesive/adhesive laws. interesting discussion of such effects.

¢<0 on 6=0

(2.18)
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Rigid roller

Elastic half-space

(a)

‘l Rigid axle I)
c i

Elastic race

Elastic hali-space

(¢) (@

Fig. 10 Contact configurationa) unloaded roller bearindy) loaded roller bearing;) journal bearing under load,) piston ring pressing
against a cylinder wal{deformation not indicated

for r >0, whereR; is the radius of the indenting roller. Given

compliance with these added restrictions, singular response

is no longer possible. [
To see this, consider what happens otherwise. There are

two cases. (i) ug=ord (KJ7) (i) og=ord (K/T)
i) Singular stresses participate with a positive stress in- / A /
0

tensity factor ofK,(K,>0). -— Z |

_—

ii) Singular stresses participate with a negative stress in-
tensity factor of—K,.

AR T
V\el |

r

Underi, the singular stress field must dominate all others as
C is approached from within the contact region, so that the
contact stresses must become ten6itdicated ond=0 in

Fig. 11). This is in violation of the first of Eq92.18. Under

ii, the displacement of the indented material just out§ide
vertically upwards and consequently interpenetrates the in-
dentor(indicated onf= 7 in Fig. 11). This is in violation of

the second of Eqg2.18. Hence, the classical singular fields
associated with a crack cannot participate in the conforming
contact configuration of Fig. 10if the inequality constraints Fig. 11 Local contact configuration & in Fig. 1(b: coordinates
of Egs.(2.18 are enforced. and consequences of singularities

i

i
z&*

U

y

Elastic half-space
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The question that now arises is can we, in actuality, eassume that there is no slipping whatsoever. The resulting
force the inequality constraints of Eq&.18 and so remove stick conditions within the contact region, in terms of the
singularities? The fact that Eq$2.18 would seem to be coordinates of Fig. 11, take the form
physically sensible and therefore desirable does not necessar-
ily mean they can be enforced within classical elasticity. Af- Y¢=Uo, U;=0, on 6=0 (2.20)

ter aI_I, singularif[ies in gener_al are _nonphysical SO it Wou_ld %r r>0. In Egs.(2.20, u, is the radial displacement which
physically sensible and desirable if we could simply Ieg|sla§g set to zero by virtue of the indented material completely

them out of elastic solutions. Unfortunately, such Iegislatiogl[iCking to the rigid indentor. Again the homogeneous coun-

typically leads to the posing of a problem that has no SOIHérpart of Eqs(2.20, taken together with the stress-free con-

tion, the local regular elastic fields being incomplete WithOL&ition on 6= in Egs.(2.17), admits the possibility of stress

thellzr smgu:tar cgunterp?rti,. h h qditi angularities. These are the same as for the adhering tire of
or conforming contact, however, we have an addiiongyq o quction P; of Table 2 and Fig. B) which has sin-

degree of freedom of which we can take advantage. This Slarities of ord €~ Y2costInt)) and ord ¢~ *2sin(zInr
the extent of the contact regidie, the length betwee@ and gence we can a(nticipate(ﬁhe i)ame respgn @(thc )31

C’ that 2 denotes in Fig. 1). By suitably adjusting this Fig. 11. These two singularities occur in combinationvirm

extent, the mvelrse—square-root stress smgulanty can b.e dfstinct local fieldswhich can participate independently of
moved. Then, since there are no other singular fields with

lastici C he local bound giti £ HAch otheXexcept for incompressible plane strain for which
elasticity satisfying the local boundary conditions 9S,=0 and there is but one local singular field—see Egs.

(2.17), or their homogeneous counterparts, the conflgurau?fA)). Thus adjusting theneparameter we have available to

is rendered singularity free. us, the contact extent, is generally not sufficient to remove

Implicitly, this adjustment of contact extent so as to reB%Idth of them. Accordingly, now it can be impossible to find

move stress singularities is what Hertz did when he solv% stic solutions in compliance with Eqg.18), and singular

cgntiﬁct?&robﬁms Olf E_he ger:lr? 0]; the roII?r (:f I?galamdbh_ tresses can occur. For example, returning to the Hertzian
(Hertz[74]). His solutions all feature contact stresses w 'C%ntact of the roller of Fig. I®but now with stick condi-

are nonsingular and, indeed, go to zero at the edges of s as in Eqgs(2.20, the normal contact stress becomes
contact region. For example, for the roller of Fig.bl@he '

Hertzian contact stress is 2F | —x
- 2__ 2 .
oF o=~ | V! XCOE{”'"HX
UVZ_HZ |c—x on y=0 (219)
2ylx | —x
for —I<x<I, whereF is the force per unit length in the +—m5'” 7In| 7 (2.21)
out-of-plane direction, and andy are now as in Fig. 19
with origin O in the middle of the contact region. on y=0, for —I<x<I.12 The shear contact stress is simi-

The same situation obtains for frictionless conformingrly singular.

contact by rigid indentors in general. Namely, that the extent To alleviate the singular response of direct conforming
of the contact region can be adjusted so that only compregmntact with no slip, one can allow some lateral displace-
sive tractions occur within it and there is no interpenetratiQﬂent_ This can be done by app|y|ng the load incrementa”y
outside of it. Given compliance with these constraintgo that surface material outside the contact region is at least
stresses are nonsingular. An example of more extensive c@flowed to move laterally prior to coming into contact. Mos-
forming contact than that of the roller on the half-space ugakovskii[78] describes the implementation of such a physi-
der Hertzian assumptions is furnished in Steuermig#). cally more realistic approach. Results are nonsingular and
Therein closed-form expressions for contact stresses sheymply with the constraints of Eq$2.18. Indeed, for the
they behave as ordt”®) asr—0 at the edges of the contacthormal contact stressry is as in Egs.(2.2]) but with »
region, the same behavior as in E¢2.19. As a further =0, so that the Hertzian contact stress of E@s19 is re-
example, the closely conforming contact of Fig.c1l® covered. Similar results obtain for the axisymmetric counter-
treated in Perssofv6], and demonstrates that stress singtpart (see Goodmah79] and Mossakovskif80]).1® For both
larities can also be removed in this instance. configurations, though, in the limit as the edge of the contact
The same situation does not obtain for nonconforminggion is approached from within, the ratio of the shear con-
contact. Herein the sharp edges present can set the limitgft stress divided by the normal approaches infinity. This
the contact region so that the contact extent is not availahigplies that an infinite coefficient of friction is needed for no
to be adjusted to remove singular behavior. This is the cagigh once contact is made. This in turn suggests that we en-

for the indentor of Fig. 1@. Such configurations require thetertain the possibility of slip in the outer portions of the
introduction of appropriate cohesive/adhesive laws to rend@intact region itself.
them singularity fredas in Section 2.8

We now admittwo extensionso the limited class of con- 2The derivation of Eq(2.21) is straightforward using complex potential methods as in,
tact problems considered heretofore. First, we entertain tweGladwell[77], Chapter 4.
introduction offriction effects To obtain a bound on thesemSpence subsequently showed via dimensional analysis that the stress fields involved

T o are self similar, thereby enabling direct implementation rather than incrent8pece
effects to complement that of frictionless conditions, we casu).
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For such slip under a rigid indentor up to the contact limijuantity taken in Griffith{51] is the energy release ratac-
at C in Fig. 11, the boundary conditions take the form companying crack extensio®, and Griffith hypothesized
thatG controls brittle fracture at cracks.

The basic elements of the argument which establish the
for r>0. In Egs.(2.22, f has the magnitude of the coeffi-energy release rate for incipient crack propagation and define
cient of friction. The sign off is taken to be such that, its role in a brittle fracture criterion may be described as
opposes any slipping displacement. Consequently for follows. To fix ideas, reconsider the tensile crack of Fig. 3
compressive normal contact stresses, fsgrsgnu,, where but now with the surrounding material being strictly linear
sgn is the signum function. The conditions of E¢®.22) elastic all the way to fast fracture. Such a material is some-
with the first of Eqs(2.17) prescribe local boundary condi-times termed “perfectly brittle.” By symmetry in Fig. 3, ten-
tions for a slip-to-free transition: When taken abutting theile crack extension can be expected to occur along the
displacement requirements in EqR.20 if |7, <|fo,, X-axis where the maximum tensile stresses occur. The energy
they prescribe local boundary conditions for a slip-to-stickvailable to drive this extension comes from the strain en-
transition. For both transition configurations, it is possible tergy of the material surrounding the crack tip: Unlike its
show only a single singularity exists. Accordingly, by approcontributing stress and strain fields, the strain energy is
priately adjusting the positions of these two transitions, bottounded by virtue of being an integral of these fields. If the
singularities can be removed. To capture the physics bett@te such energy releases at the newly formed surfaces in the
the loading needs to continue to be applied incrementatly extension exceeds the rate at which it needs to be supplied to
effectively so via similarity argumentsSuch an analysis form them, brittle fracture is hypothesized to occur.
may be found in Spenck82] and produces singularity-free  One way in which such an energy argument for crack
stresses. extension can be implemented is as follows. First, compute

As a second extension to the class of contact probledfie drop in strain energy accompanying a crack extension
considered, we admideformation of the indentorResults Within some region surrounding the crack tip. Next, subtract
remain essentially the same. For conforming contact withoilte energy transported away as work terms across the bound-
friction, or with friction but allowing for slip, physically rea- ary of this region not including the newly formed crack sur-
sonable inequalities can be complied with by adjustinigces. Thus, the energy released on the crack extension is
boundary region extents and configurations rendered freeadtained. Dividing this energy by the extension length, and
singularities. Dundurs and Comninoy83] furnish taking the limit as this length goes to zero, then gives the
asymptotic arguments that obeying such inequality cognergy release rate for crack propagation.
straints removes singular behavior, while there are a numberAlternatively, one can simply compute the strain energy
of examples showing that one can actually adjust extentsreleased as work terms on the boundary of the newly formed
do this(eg, Johnsom73]). crack surfaces, then divide by the crack extension length and

In sum, when sufficient degrees of freedom are availabieke the limit as it goes to zero to obtain the energy release
to enable compliance with the pertinent inequalities, stregdfe. Both approaches, properly carried out, give the same
singularities can be removed from conforming contact prokesult. Both are true energy balances in the sense of classical
lems. The resulting nonsingular stresses may be loos@lysics. Both have the strain energy as the potential energy
termed Hertzian, and have been found to be generally s@ggurce, since this is the ability of an elastic system to per-
ported by experimentg§lohnson[73], Chapter 4 In these form work by virtue of its deformed state. Given this equiva-
circumstances, therefore, the stress analyst should make lence, we choose to focus further discussion on the second
ery effort to comply with the inequality conditions. approach here because it is relatively diréct.

In describing such an energy argument, we follow lrwin

[84] because the analysis therein is elegant in its simplicity.
3 TRYING TO MAKE PHYSICAL SENSE Hence we consider a crack tip under symmetric loading
OF PERSISTENT STRESS SINGULARITIES which produces a small extensida aligned with the origi-
3.1 Interpreting crack-tip singularities: The energy nal crack(Fig. 12. Pr_ior to the extension, the.tensi.Ie stress
release rate hypotheses ahead of the crack tipry ar!d tht.-:"crack ‘opening dlsplacg-
. . . - . ment back of itv can be identified using an asymptotic
we now trn to _conflgu_ratlons n ela§t|C|ty for which theanalysis as in William$20]. Locally this results in
foregoing strategies, while removing singular stresses, do so
with an approach that is yet not mature. Principal amongst
these in their practical importance are those involving cracks K
as treated within classical elasticity, so we initially focus on oy= !
trying to interpret the crack-tip singularities. V2mX

Griffith was first to appreciate that it is futile to attempt to
directly interpret the implications for fracture of singulaft is unfortunate that the variational statement of equilibrium in elasticity is often
crack-tip stresses. He also appreciated that, while SinguEEIe e i of T pteni ey s e kncuors nioves s
nonetheless these stresses are integrable; therefore theytwGagastic potential energy, the strain energy. By serendipity, though, it is possible to
be integrated to arrive at a bounded quantity which may ke this mistake and defir@ as a derivative of this functional and still obtain the

R X - X cofrect energy release ratessentially this happens because there is no energy trans-
physically interpreted. In essence, the particular integratgghed across parts of the boundary where displacements are held fixed

U0:uO, Trng(fg, on 020 (222)

+0(x¥?) as x—0(x>0)
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Crack tip profiles (a)

Elastic plate

(b)

Fig. 12 Tensile stress ahead of a crack and displacements accom-
panying a small extension under symmetitode I) loading

(c)

Fig. 13 Modes of deformation at a crack tg) Mode |, b) Mode

1+k \/Tx i I, c) Mode Il
U—WK| E+O(|x| ) as x—0(x<0) (3.1)
for y=0, whereinK, continues as the symmetric, or Mode |, «
stress intensity factor. The displacement accompanying theelz—Kl2 (3.5)
extensiondv therefore is Bu
14k Sa—x In Eq. (3.5 we have added the subscript |@®to distinguish
Sv=——K,[1+0(5a)] == 2 it as being associated with Mode | or tensile crack extension
2p 2m (with deformation as sketched in Fig. d)3
+0((sa—x)¥?) as x— da(x<oa) (3.2) It is also possible to determine the energy release rate

) associated with Mode Il or shear crack extengibiy. 13).

for the perturbation irK, resulting from the extension. Now 1 s
the strain energy released on the extension must equal theG — lim J é S5

) . = - u dx 3.6
work needed to heal it and restore the crack to its unextended " Txy (3.6)
state. For an infinitesimal element of the upper flank in the _ o
extension, this healing work is one half force times displaceroceeding analogously to the derivation of B leads to
ment, or (1/2)¢, dx)(év). Adding up all such contribu- 1+k ,
tions for both the upper and lower flanks of the crack exten- Gu ~Bu Kii (3.7)
sion gives the total work needed to heal it. Dividing by the ) ) ) . )
extension lengthsa, then taking the limit assa—0, gives whereK, is the stress intensity factor in Mode II. There is a

sa—008

the energy releasete for crack propagatio®. That is, further mode of crack propagation associated with out-of-
plane shear, Mode ll{Fig. 1%). For this mode, a similar
G= Iim ijﬁaay so dx (3.3) derivation gives
sa—09a Jo K2,
To evaluateG, we introduces, of Eq. (3.1) and év of Eq. =2 (3.8)

(3.2) into Eq. (3.3 to obtain whereK,, is the stress intensity factor in Mode .
1 [(oa [da—X Each of the foregoing modes of crack extension is asso-
%fo VX dx+o(éa) (3-4)  ciated with a different way of separating material to form
new surfaces. Consequently, each must be assessed individu-
The integral in Eq.3.4) is readily performed by taking ally in a given application in order to enable meaningful
= fasirft, thereby giving comparisons with corresponding critical values. In practice,

G= K2 lim
47T,LL sa—0
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brittle fracture typically occurs in tension rather than in F
shear. This means that under general loading, with both sym- T
metric and antisymmetric contributions, crack extension may
well not occur aligned with the originating cracs in Fig.

12), but rather along a ray emanating from the crack tip
which maximizes the energy release rate in Mode I. Even so,
we still need to be able to distinguish amongst the different
contributions to the total energy release rate so as to obtain
the maximumG, and determine the ray on which it acts for

. . 1%}
a given loading. 2§r\ack
Two observations can be made on the foregoing results

for energy release rates. First, only the singular stresses and
their displacements contribute to these rates. Second, accept-

Elastic plate

Wy, V4

Elastic plate
ing the hypothesis thds,, G, , andG,, control brittle frac- gy Vs
ture in their various modes is completely equivalent to ac-
cepting the corresponding stress intensity factérs, K, l
andK,, , in this role. F

The literature has a number of other developments of the
elastic energy argument for brittle fracture which are consis-
tent with the precedinf, Several of these express the energy
release rate with path-independent integrals which enclose
the crack tip: in chronological order, Eshelf§6], Sanders extend this means of singularity interpretation to other con-
[87], CherepanoV36], and Rice[88]. The isolation of the figurations. Perhaps the most natural to consider in this way
contributions from different modes of crack propagation isig theinterface crackconfiguration wherein material on each
little more awkward to effect with these integrals. This magide of the crack plane can have different elastic moghHit;.
in part account for current practice preferring to expressi). Now, as noted in the Introduction, Williani21] shows
brittle fracture criteria in terms of stress intensity factorghat the inverse-square-root singularity of a crack can have
rather than energy release rates. oscillatory multipliers. For example, in terms of the cylindri-

Originally, Griffith hypothesized that brittle fracture oc-cal polar coordinates of Fig. 14,
curs when the energy release rate equals the surface energy _ T
of the solid being fractured. Later, Irwif89] and Orowan 7y=0(r"*2cog 7 Inr))+O(r"*sin(7Inr))

[90] independently argued that the energy “sink” for fracture as r—o0 (3.9)
could also include some plastic dissipation, provided the ex- ) . )

tent of any accompanying yield region is limited to the imo" 0=0, wherey is as in Eq.(1.3. That these possible local
mediate neighborhood of the crack tip. This extension §fngular stresses do in fact participate in the response of glo-
Griffith’s original hypothesis realized the practical benefit gp@l configurations is confirmed by solutions to such prob-
enabling the approach to be applied to metals. Aside frdfs: as in Englanf®1]. Undertaking an analysis as earlier
these hypotheses as to acceptable energy sinks for fractffe Companion energy release rates associated with crack ex-
there is a further basic hypothesis underlying either af2nsion along the interface then gives, for Mode I,

proa(_:h. This has t_hat the integral_ of something_which is not G,=c+ lim [¢’ cog27In da)+c” sin(27In da)]

physically appropriate—namely singular crack-tip stresses— sa—0

can yet furnish something which is—namely the energy re- (3.10)

lease rates accompanying crack extension. Thus, the engfferec. ¢’ andc” are constants (generaiiy0). Clearly
arguments of classical fracture mechanics contain two ht¥f P

h ] tor th for fract the of e limit in Eq. (3.10 does not exist. A like result holds for
potheses. one lor the energy sources for fracture, the o I?f,r and accordingly neither is a well-defined quantity. In
for the energy sinks. Each one needs to be complied with fg

th h o b ful Th tent to which th mbination, however, the terms that are undefineg@d,iand
€ approach to be successiul. 1he extent o which they ?@g, can be shown to cancel, so that a total energy release rate

n fagt, can be JUdged by the .degree of agreement _Ofveﬁes exist. Nonetheless, the inability to distinguish between
physwal evidence W'th pred|ct|(_)ns bgse_d on t_he pair. Viodes is unsatisfactory for the reasons indicated earlier.
review some physical data with this issue in mind IrR/Ioreover, the situation is not improved if crack extension in
Section 3.4. directions other than along the interface is entertained. Ac-
cordingly, the generally more nonphysical singular stresses
3.2 Energy release rates for interface cracks of interface cracks would seem to require special attention in

The ease with which the singular fields for a crack can gder to effect satisfactory physical interpretations.

integrated to provide energy release rates suggests trying tof Nis need has occasioned a series of models for the inter-
face crack to be put forward since Williarfgl]: the contact

5There are also some articles which are not consistent and may be shown to beZ(l%ne model  of ComanL[gz]’ the crack-openlng-angle

error—see Keating and Sincldi85] for a review. model of Sinclair[93], the intervening-layer models of At-

Fig. 14 An interface crack configuration
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Fig. 15 Crack-tip models for the interface crael:contact zone modeh) crack opening angle modad) intervening layer model with
constant modulid) intervening layer model with continuously varying moduli

kinson [94], and the perturbed moduli model of He and o, =¢ . Tl =T
Hutchinson[95] and Suo and Hutchinsg®6]. We review 0=0"  6=0- 9=0+ 9=0"
these models next.
There is a further unsatisfactory aspect of elastic solutions ul  =u : Ugl = uyl (3.11)
for interface cracks based on the model of Williaf24]. As 6=0" =0~ 0=0" =0~

pointed out in Englan{®1] and Malyshev and Salgani®7],  for r>0: the frictionless contact conditions behifg
the crack-flank displacements also oscillate and in so doing

interpenetrate one another. This interference between theosl =0 Ul =uyl
crack flanks lead Malyshev and Salganik to suggest introduc- =7 =~ o=m  o=mm
ing a contact zone for the crack flanks immediately contigu- 7,=0 on 6=+ (3.12)

ous to the crack tip. Such eontact zone modekas first

pursued in Comnino{i92], and subsequently has seen quit@l’ 0<r<I, wherel is the extent of the contact zone; and
extensive investigation—see references in Comnif@gj. the stress-free conditions once contact ceas€¥' at

The basic elements of such a model are as follows.

In terms of the cylindrical polar coordinates of Fig.al5 ¢ Tp=0 on f=xm (3.13)
three types of conditions near the original crack tifdaare for r>1. Equations3.11)—(3.13, when taken together with
prescribed in the contact zone model for the interface crathe planar elastic field equations for the respective materials
the matching conditions for perfect bonding aheadof and boundary conditions describing loading remote from the
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crack, can constitute a complete problem statement in elasver the nonoscillatory inverse-square-root singularity of a
ticity. In addition, though, we would like to adjoin a con-crack in a single material. Thisrack-opening-angle model
straint which prohibits interpenetration once contachares with the contact zone model the matching conditions
ceases—a primary motivation for the model in the firdbr a perfectly bonded interface ahead of the crack tip,
place—as well as a constraint which only admits compresamely Eqgs.(3.11), and has stress-free conditions on the
sive stresses within the contact zone. Can we do this? Térack flanks which are taken to subtend an angl® af the
answer is yes for two reasons. First, we can adjust the extentoaded state. That is, in terms of the cylindrical polar co-
of the contact regioh so as to remove the one singular fieldrdinates of Fig. 15,
possible alO’, thereby ensuring no interpenetration: This is
the same adjustment as used to the same end in frictionlessaﬁ:o’ 7¢=0, on f=m—®,—m (3.15)
conforming contact in Section 2.4. Second, the local fieldsfar r>0. For given material moduli, the value d that
O (elucidated in the Appendix of Comnin¢82]) can feature removes the oscillatory multiplier of the stress singularity at
a compressive inverse-square-root singularity in the norm@l may be found in Sinclaif93]. For this angle, the crack
stress within the contact zorgiz, in o, on #=1 in Fig. flanks open without interference under tensile loading as in-
15a). Once present, this singular stress means that, no matigated in Fig. 16.
how hard we pull the overall configuration apart with remote The approach may be viewed as the dual of the contact
tensile loading, the finite biaxial tensile stresses so inducedzahe model. In the contact zone model, contact of the crack
O can never completely negate the infinite compressive ndlanks is anticipated and boundary conditions thereon up-
mal stress there. Hence there can always exist a region, allited to reflect this event. In the crack-opening-angle model,
possibly a small one, in which contact stresses are compresack opening is anticipated and the crack flanks angled apart
sive. to promote this event. For a specific applied tensile load,
The question that now arises is when is such a local siassuming crack opening via the crack-opening-angle model
gular stress field excited in global problems? Somewhat sgan be shown to lead to a unique solutitime proof follows
prisingly, Comninoy92] shows that the closing of the crackalong the lines of Knowles and Pudi@9]). Both the normal
tips present in the contact zone models can occur in glolzald shear stress on the bonded interface in such a solution
configurations when the loading over the crack flanks is prare singular(provided ® #0). Companion energy release
dominantly in the opening mod@s in Fig. 14. In Comni- rates are given by
nou [92], when an interface crack is under uniform tensile ) 5 2 )
loading at infinity, fields for the contact zone model are de- [ GI]_[ C] [pa(L )™ pp(1H rcy) ]Kz (3.16)

termined which have compressive stresses within the contactl GnJ (€’ Hapo( iyt o)
erex; and o, are as in Eqs(3.14), ¢ andc’ are now

zone. These fields are also free of any interference bet\myq
fMmensionless constants whose values depend on elastic

the crack flanks. Furthermore, the solution obtained once
contact zone model is adopted may be shown to be uni Bduli, andK is the one stress intensity factor present in the
model.

(see Comninoy98]). Looking ahead of the crack tip in the
For a given interface crack configuration with predomi-

model © in Fig. 15), we find the shear stress alone to be
singular(see the Appendix in Comnind§2)). This has to be nantly tensile loading as in Fig. 14, both the contact zone
Hﬁ{]del and the crack-opening-angle model can be applied.

the case since a normal singular stress there, if tensile, wo

separgte the crack flanks in the contact zone, while if COhce a decision is made as to which model to use, the solu-
Pressive, would cause them to overlap one anot.her. The fiSh for that model is unigue and free of interference between
_somated energy reI_ease rates for crack propagation along (Elf'gck flanks. So which one should we use? The answer is not
interface argComninou[98]) obvious, but quite possibly neither. This is because, in choos-
ing one or the other, themodeleris making the decision as to
the relative contributions of Mode | and Mode Il to crack
propagation along the interface. In effect this decision has
(3.14) thz_it, for a broad spectrum of rem(_)te Ioadings_ having a sig-
nificant tensile component, the ratio Gf to G, is to be in
The Mode | energy release rate is zero by virtue of themme or the other of the but two fixed proportions prescribed
being no singular normal stress on the bonded interfaceby Egs. (3.14 and (3.16. If it happens that this a priori
the contact zone model. selection is physically appropriate, the use of the model cho-
In an attempt to complement the contact zone model wigien may be justifiable. If not, then not. In general, nhedel
one which does permit crack propagation along the interfasbould make the decision as to the relative participation of
in an opening mode accompanied by a positive energy tdodes | and Il, and this decision should be sensitive to the
lease rate, the following simple tactic is suggested in Sinclapecific loading being applied.
[93]. While the singular character of a crack can be increased Atkinson [94] furnishes a pair of alternative models for
by the introduction of an abrupt material discontinuity on thiéhe interface crack tip. These each have the attribute of let-
crack plane, it can be reduced by opening the angle sulmg loading interact with the model itself to set relative
tended at the crack tip prior to loadinfig. 1%). The two mode participation. They both feature an interface layer
effects can be adjusted so as to offset one another andwich contains a stress-free crack. In the fifsg. 15c), the

/,-\Lli-\LZ 2
G=0, Gy=— —+22
' " Apapo(fyt ) "

1= pat Kifo, o= Mot Kopy
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intervening layer is taken to be homogeneous with elastic F
moduli which are intermediate to the parent moduli<(© T
<1 in Fig. 1%). In the secondFig. 15), the intervening

layer is taken to have varying moduli which effect a continu-

ous transition from those for one of the parent materials to y 5,

the other(a linear variation is shown by way of simple ex- / r

ample. For both of theseintervening-layer modejsthe Reentrant

inverse-square-root singularities of a crack in a single mate- cormer

rial are recovered together with their associated energy re- /

lease rates, Eq43.5 and (3.7). Therefore, response as to 75‘9 N x

mode of crack propagation is essentially the same as for a AR >
crack in a single material. That is, in accordance with one of ,_L:g;‘l

the following scenarios.

i) If any tensile Mode | fields are excited by the applied
loading, no interference or contact occurs between
crack flanks and Mode | propagation along the inter-
face is possible. Mode Il contributions to propagation
may also be present under these circumstances.

ii) If any compressive Mode | fields are excited, interpen- l

’ ; i F
etration of the crack flanks is predicted and must be
alleviated by admitting contact between them. Cragkg. 16 Tensile stress ahead of a reentrant corner and displace-
propagation along the interface can only occur in Mod®aents accompanying a small extension under symmetric loading
Il under these circumstances.
ii) If Mode | fields are not excited at all, Mode Il is obvi-

ously the only possibility for propagation along the in- Further support for the perturbed moduli model stems

terface. Such propagation may occur with or WIthOL1’trom the fact that, generallyy is small (7| <7/40, see Eq.

contact between the crack flanks, depending on the p?f3)). Hence setting it to zero does not change the absolute

ticipation of other regular crack-tip fields. value of the singularity exponent mucki6%), nordoes it
Consequently here, under tension, there would not appeapiessitate dramatic changes in elastic moduli. Indeed, for
be any reason for the modeler to fix the relative participatigflane strain, it is always possible to maintain the actual ratio
of modes prior to applying actual loading. of shear moduli sought in an application and geb be zero
For the models of Atkinsoii94] to be physically appro- by adjusting a Poisson’s ratio while still maintaining it within
priate, the heights of the layerst{zandh in Figs. 1£ andd)  the physical range of zero to one half. More precisely in this
need to be physically reasoned. On the atomic/molecul@gard, one can proceed as follows. Without loss of general-

level, one can envisage a small region in which the cohesiig number the materials so that;<u,. Then replace the
laws acting within material 1 switch to adhesive laws bexctualx, by x; where

tween materials 1 and 2, then to cohesive laws within mate-
rial 2. The height of this transmgn region can pe expected to k1= (ky—1) ﬂ+ 1 (3.17)
be of the order of several atomic/molecular diameters. Con- M2

stitutive laws can therefore also be expected to vary overriis replacement value by itself ensures=0 for plane
similar size scale. Thus the incorporation of intervening lagtrain. For plane stress, though, some modifications to the
ers into the global analysis of crack configurations is n@fye ratio of the shear moduli are needed to renger0
without significant analytical challenges. when one shear modulus differs from the other by more than
Nonetheless, the intervening-layer models of Atkinsof factor of three. Even so, the strategy would seem to be the

[94] are conceptually valuable and support the mode of cragpst effective way of treating interface cracks within classi-
propagation being dependent on applied loading in much thgl elasticity at this time.

same way as for the crack in a homogeneous plate. It follows

that these models do not in general support the use of either

the contact zone model or the crack-opening-angle modd|3 Interpreting other singularities: The K-controlled
Rather they lend support adopting the strategy for treatiggnulus hypothesis

interface cracks first put forward in He and Hutchin$®B], In attempting to interpret other singular configurations, it is
and subsequently amplified in Suo and Hutching8]. This natural at the outset to try and extend energy release rate
strategy simply setg of Egs.(1.3), (3.9), and(3.10 to zero arguments. As a demonstration, we consider the sharp reen-
by suitably adjusting material moduli. Such @erturbed trant corner under symmetric loadirigig. 16).

moduli modehas no oscillatory character and accompanying The stresses directly ahead of the corner are dominated by
crack-flank interference, and has decoupled energy releéise singular field there. Thus, in terms of the rectangular
rates,G, andG,;, as in Egs(3.5 and(3.7). Cartesian coordinates of Fig. 16,

Elastic plate
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linear elastic fields for cracks to instances in which small
scale yielding is admitted. These elements are as follows.
In the immediate vicinity of a crack tip there exists a
region wherein th& fields are just not physically appropri-
ate by virtue of the singularity they contain. To keep the
development simple, enclose this region within a circle cen-
tered on the crack tip9, in Fig. 17). If the radius of this
region in small enough, immediately outside it stresses for
theK fields dominate those for all other elastic fields. As one
moves further away, the stresses of Kdields become of
comparable magnitude to the others present. Under these cir-
Elastic region cumstances, the region exterior %, may be subdivided
into an annular regiofR, in which theK fields are valid and
dominant, and a still further removed exterior regig in
Fig. 17 K-controlled annulus at a crack tip which theK fields, while valid, have comparable stresses to
the regular fieldgFig. 17). Within the annulus®,, then, the
K fields can be regarded as prescribing physically appropri-
ate traction boundary conditions for the innermost crack-tip

K . .
o= 2y +0o(1) as x—0(x=0) (3.18) regionfRg. In this sensgl;( can be expe'cte.d to control What
V2 XY happens at the crack tip. If the material is perfectly brittle,

this meanXK controls brittle fracture at the crack tip. If the
material is ductile but any yielding is confined to wittihy,
%anay be still be viewed as controlling fracture at the crack

ony=0, whereiny is the singularity exponent an,, its
associated stress intensity factor. In the event that the cor
angle® tends to zero and the corner becomes a crack w
= 172, e recover the first of Eq3.1). Other values O.f the Before examining the implications of le-controlled an-
singularity exponent for other corners can be determined us-

ing Williams [20]. These values show that<1/2 for ® ?hUIUS Lnterp;et:]zglontfurthfgr,ldsoge z_add;_tlontz:]l clziﬂﬂcatlonlof
>0 (eg, for®=90°, y=0.46). e notion o stress fields dominating the other regular

Now we entertain a small crack-like extension of |engtﬁtresses present in the annulus is_ helpful. At_the outs_et, one
Sa. We take this extension to be in the form of a mathemam'ght be tempted to adopt the obvious but stringent criterion
cally sharp small crack when undeformed so that no materfpt the tractions fronK fields dominate those from regular
is removed. Its deformed shape is indicated in Fig. 16 afi§lds atall points on a circular arc within the annulus. Un-
the companion displacement assumes the same expressidfdgnately, this is typically not possible. To explain further,
previously, namely as in Eq3.2). Furthermore, using the the stress components that can act as tractions on a circular
same energy argument as in Section 3.1 results in the sadie withinR, are o, and 7., (Fig. 17). If the crack is under
expression for the energy release rate, namely(&§). On symmetric loading, thé&, stress field hag, =0 at 0=+ 7
introducing Eqs(3.18 and Eq.(3.2) into Eq.(3.3), and mak- (see, eg, Tada et §5], p. 1.40. Thus, the magnitude of the

ing the change of variable as f(8.4), we obtain associated traction cannot dominate that of any regular field
1 with o, #0 at 6= = 7, and there are a number of such regu-
= +KK275(1_%3/2) lim K, 6al2 7 (3.19) lar figlds for Modg I crgcks(these stem from polynomigl
AT 5a—0 solutions. Alternatively, if the crack is under antisymmetric

) . . _loading, the K, stress field haso,=7,=0 at 6=
whereB is the beta function. What becomes apparent in Eg_;.z sin114/3 (ibid). Again there are regular fields whose

(3.19 is that the crack is a somewhat fortunate “corner; _ .. ; . .
- . . - tractions are not dominated. Accordingly, white and
since it is the only one which has a finit, (becausey gly, while 716

—1/2 andK,#0 assa—0). All other corners have zei@, may act as controlling tractions withiR,, the criterion for

(becausey< 1/2 andK, is bounded asa—0). This conclu- them to do so needs to be based on something other than
: ' tw_eir own values point by point throughofi, .

sion can also be reached using any of the valid pa devel I ) L ke th incioal
independent integrals for the energy release rate mentioned'© d€velop an alternative criterion, we take the principa
sical phenomenon we are trying to capture with our

in Section 3.1. Accordingly, we cannot use an energy rele ; ) )
rate interpretation for reentrant corners wilh>0. More- K-controlled annulus interpretation for a crack to be brittle

over, energy release rate arguments break down in a simfi@cture on radial rays emanating from the crack tip. Physi-
way for a wide variety of other singular configurationscally, brittle fracture is predominantly caused by tensile
Needed, therefore, is an alternative interpretation. stresses. It follows that we can expect the hoop stress on
One alternative interpretation argues forkacontrolled radial rayso, to control this event. Of course, withi, this
annulus. The essential elements of such an argument gli©Ss component goes to infinity in traditional elastic treat-
given in Irwin[100]; a more extensive discussion is given inments. However, withifi, it does not. Hence, in principle
Rice [101] in the context of extending the applicability ofwe can check if the maximumr, for theK fields inf’, is an
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order of magnitude greater than the maximapfrom any dominant with respect to the other, or how to combine their
regular fields. If this is the case, it would seem reasonabledfiects. This is so even if we continue to base our decisions
view theK fields as dominant. in this regard ono, in the annulus despite-, now having
The foregoing is but one fairly simple possibility for asdistinctly different dependencies an The reason is that, if
sessing the dominance Kf fields in the annulus; others ex-K, happens to be bigger tha¢,, we cannot tell which has
ist. For Mode | configurations, the resultikgcontrolled an- the largero, without a knowledge of the radius of the arc
nulus interpretation is the same as accepting the energkiereon we are making the comparison. However, because
release rat&, as controlling fracture. For mixed-mode situwe do not know the true physical stress field, we are not
ations, it is essentially equivalent to the fracture criterioreally able to specify the location of the annulus with this
proposed in Erdogan and Sjithi02] and supported by somearc. So here &-controlled annulus interpretation does not
experimental evidence therein. Thus while this choice is natadily permit predictions of what happens under mixed-
unique, it does not appear unreasonable and it does helpde loading.
focus ensuing discussion. Moreover, it is not expected thatA further example of a potential shortcoming in the
other reasonable alternatives would significantly alter thé-controlled annulus approach is that of the epoxy-steel butt
conclusions drawn from this discussion. joint (as for P, of Table 2 and Fig. &. Herein there is but
One attribute of theK-controlled annulus interpretationone stress intensity factor for both the normal stress and the
that we have adopted is that it can be applied to singularitisisear on the interface. Hence, any fracture on the interface is
other than just those at a crack. Reconsider our earlier eonstrained by traditional elastic modeling to occur with a
ample of a reentrant corner under symmetric tensile loadifiged ratio of tensile contribution to shear, irrespective of the
(Fig. 16. Even for a corner subtending an angle of 90°, theomposition of the far-field loading. This sort of unrealistic
singularity is almost as strong as for a crack. Hence, if thienitation makes it unlikely that this singl€ can be reliably
K-controlled annulus argument is successful for a crack,used to predict brittle fracture for widely differing loads.
can reasonably be expected to be capable of extension tdOn the other hand, for a single type of configuration, one
reentrant corners subtending angles up to 90° and subjeatealy be able to use stress intensity factorsawok different
to tensile loading. For other singularities which are yetdhesives’ strengths. When the adhesives share a common
weaker, the dominance of the associated stresses is confiRetson’s ratio and the adherend is relatively rigid, there is a
to a smaller neighborhood of the singular point, but so ta@mmmon singularity exponent and the valuekot fracture
may be the region wherein stresses are not physically appcan be expected to reflect the relative strength of the adhe-
priate. Consequently, it would not seem unreasonable to aives for the particular test configuration used. For other
tertain the possibility of a-controlled annulus for these adhesive-adherend interfaces wherein the singularity expo-
situations as welt® nents are not identical but are close to one another, it may be
While successful in extending the range of singular copossible to perturb elastic moduli so that the singularity ex-
figurations that can be interpreted over that with just energynents become the same, and then rank adhesive strengths
release rate arguments, there are some shortcomings inftirehe specific configuration of concern. However, when sin-
K-controlled annulus approach for these other singularitiegularity exponents differ to the point that it is not judged to
We demonstrate this next with some examples. be reasonable to coalesce them via moduli modifications,
Returning to the special case of the 90° reentrant cornegmparisons of adhesive strengths can be expected to be less
typically mixed-mode loading can be expected in practiceonsistent.
That is, loading which is neither purely symmetric nor purely To explain further, suppose that, for a butt joint under
antisymmetric about the bisector of the corner angle. Undiension with a single adherend, glue 1 has a singularity ex-
these circumstances, there are tdifferent typesof stress ponenty; and a stress intensity factor at brittle fracture along
singularities that can be presedass forF in Fig. 2d andPs  the interface oK, while glue 2 has a singularity exponent
of Table 2. Thus, in terms of the cylindrical polar coordi-y, and a stress intensity factor at fracturekgf. Thus, ifa@
nates of Fig. 16, and af@ are the normal stresses on the interface at fracture
for glue 1 and 2, respectively,

Ks Ka
Tp= + asr—0 (320) K]_ K2
271048 \[2 77009 oD= +0o(1), o@= +0o(1), asr—o0
f V2mr 1 f N2 2
on 6=0. In Eq.(3.20, K andK are the generalized stress (3.21)

intensity factors associated with symmetric and antisymmetherer is now the distance from where the interface meets
ric loading, respectively. Given the different orders of thehe outside of the specimerP{ in Fig. 2e). Two different
stress singularities associated withandK, in Eq.(3.20, it  situations can now be envisaged. First, we have the situation
is not clear that they share a common annulus. Further, ewghere we can name the two glues so that
if they do, we cannot always tell if one of the two fields is

v1>7v, and K;>K, (3.22)
16K-controlled annulus interpretations have also been advanced for the interface crddren the local stresses are uniformly higher for glue landit
(Rice [103]). They particularly merit being considered when the perturbed moduig.h reasonable to conclude that g|ue 1is probably Stronger

Sh-

approach is not applicable. Such can be the case in anisotropic configurations; Hu . R ; X .
inson and Su$104] reviews such instances. than glue 2 for the given butt joint in tension, and quite
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possibly so for like butt joints. Second, we have the situatidributing 90% or more of the normal stress»at. Conse-
wherein, regardless of how we name the two glues, we hageently, here we can readily find a location at which ke
a jumbled result as in field dominates while complying with the assumptions
within elasticity theory. Similarly, other configurations can
71> 72 UL K=K, (8:23) " 4nd should beycheckgd for suc%/ compliance.gI
or vice versa. Then the local stresses vary as to which glueUnfortunately, while complying with the underlying as-
has higher values and it is difficult to decide which is theumptions of elasticity may be a necessary requirement for
locally stronger glue just for the given butt joint, let alonghe K fields to be physically applicable, it is generally not a
more generally. As with the earlier reentrant corner exampkfficient one. This is because the physical discrepancy be-
we would need to know the actual location of a commotween the singular stresses and reality that must occur near a
K-controlled annulus to make a judgment, assuming a cosingular point may result in the singular stresses continuing
mon annulus exists. to deviate significantly from the true physical stresses even
As a final example of a shortcoming in tiecontrolled when they are in accord with all three linearizing assump-
annulus approach, we consider a relatively rigid chisel itions. We demonstrate how this type of deviation can occur
denting a block(as for P4 of Table 2 and Fig. §). The in the simpler context of beam theory next.
singularity coefficient, or generalizé€l, in this instance de-  To this end, we reconsider the earlier cantilever beam ex-
pends upon the angle of the chisel tip and the elastic modatiple taken from Frisch-Fa}B4] (Section 1.4 This ex-
of the block. However, it is independent of the load applieample compares tip deflections from nonlinear and linear
to the chisel. Accordingly, even if &-controlled annulus beam theory, and demonstrates that linear theory is seriously
existed for such a configuration, theinvolved could not be in error. At the other end of the beam where it is built in,
used to estimate loads to fracture. though, both theories give the same “deflection,” namely
These examples illustrate the sort of difficulties that cazero. Moreover, we can identify a length of the beam, start-
be encountered in employing the more generally applicabifeg where it is built in, within which it is reasonable to re-
interpretation of &K-controlled annular region to stress singard linear theory as being in compliance with the assump-
gularities. They underscore that care needs to be exercisetion that recovers it from nonlinear theory. This assumption
order to appreciate the limitations of the approach and usés
consistently. q
v
LH

21372

The hypothetical nature oK-controlled annulus argu- — ~1 (3.27)
ments also bears comment. The basic hypothesis has that, a dx
one moves away from a singularity, the singular stresses Rgherev is now the beam deflection and the coordinate
come physically applicable while they still dominate th@long the beam’s length. Suppose now we adopt the view
other stresses present. So what is “physically applicablefiat anything up to a 10% difference between the right-hand
Certainly the singular fields would seem to have to compbnd left-hand sides of E¢3.27) can be regarded as the two
with all three of the underlying and unpoliced assumptions efdes being in fair agreement. It follows that linear theory is
linear elasticity to be assured of attaining this quality. This i@ fair agreement with its underlying assumption if

not difficult to check in specific instances. For example, for

the Griffith crack(Fig. 4 with b—0), compliance with the dv _1 (3.28)

_g_

assumptions of elasticity on the crack plane ahead of thedXx 4

crack tip is tantamount to insisting that the stresses there §8lving the linear beam problem, withmeasured from the
at or below yield Ieyels. Using coordinates as in Fig. 3, the iitin end and for the specifications of Frisch-Fay], we
normal stress on this plane {see, eg, Tada et 65|, PP fing Eq.(3.28 is met for O<x=64 mm(2 1/2 inches Thus,

1.20, 5.3, in this range linear beam theory can be regarded as conform-
o X+a ing with its underlying assumption. However, also in this
= ony=0 (3.24) range, linear beam theory has the bending moment as vary-
o JX(x+2a) ing from 11.3 to 11.0 N-n{100 to 97.5 Ibf-in. In fact, non-

for x>0. Determining the locatiory when this stress equals!inéar beam theory gives the bending moment as varying
the yield stress gives from 5.0 to 4.7 N-m(44 to 41.5 Ibf-in. This is a discrepancy

of more than a factor of two. What is happening here is that
o 2 the physically inaccurate predictions of linear theory for
oy >64 mm are continuing to pollute predictions when
<64 mm, even though linear theory is in fair agreement with
The corresponding contribution of the€ field, the singular g y g
stressoy, is then given by(ibid, pp 1.3, 5.1

—1/2

X
= -1 (3.25)

a

its underlying assumption in this range.
The same sort of pollution is a possibility for singular
& o a stress fields. Not to say that it has to happen, just that it
y 0 . . .
T oo Vo (3.26) might. Accordingly, we simply cannot know whether a
Uy v K-controlled annulus really exists without knowing what the
Provided far-field loading is maintained below 50% of th&ue physical stress field is, something we typically do not
yield stress, Eqs3.25 and (3.26 have theK field as con- know. Consequently we need to resort to indirect means to
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infer the existence or otherwise ofkacontrolled annulus. Table 3. Scatter inK. testing

Arguably the best of these is to examine the physical accord Specimen type Intralaboratory Interlaboratory

with _predmfuons made_ng. We look to examine some ~ gong _ 7% T11%

physical evidence in this light next. Compact tension +4% = 7%
C-shaped +5% +10%

3.4 How well doK interpretations work?

As remarked in Section 3.1, the two interpretations of stregfficult to imagine any further significant refinemenfs.
singularities discussed here are mutually consistent inasmysigsent-day testing practice that applies this standard is also
as both identify stress intensity factors as the parameters c@jpically reliable.

trolling brittle fracture. The energy release rate hypothesis Evidence of the reproducibility achieved by testing labo-
does this for cracks; thig-controlled annulus for cracks andratories in applying ASTM E399 is available in the results
other singularities. Too, both interpretations share an integfgund from round-robin testing programs described in Heyer
tion of singular stresses. The energy release rate approggld McCabé112], McCabe[113], and Underwood and Ken-
does this directly as in Eq$3.3) and(3.6); the K-controlled  dall [114] for bend specimens, compact tension specimens,
annulus indirectly by, in effect, considering control on thgnd C-shaped specimens, respectively. All told, 17 different
boundary of a region including the singularity. Henceforthaboratories took part in these programs. From these test re-
therefore, we refer to both as simpy interpretations sults, scatter can be estimatediip determination.

By far the greatest practical application Kfinterpreta-  |n undertaking this assessment, we use results for a single
tions is to configurations entailing cracks. The attendagpecimen type with a fixed nominal size and comprised of
technology is termed linear elastic fracture mechanigge same material. As a measure of scatter we take the 95%
(LEFM). Currently, LEFM plays a central role in attempts t@onfidence limits of the normal distribution divided by the
try and ensure the structural reliability of components in th@ean and expressed as a percentage. That+i&00
presence of cracks. Accordingly we focus our assessment @foes, /Ec), s« being the sample standard deviation in
how well K interpretations work on their performance withirklm an'aglc beinglcthe mean value &;,.. We compute these

LEF_M' ) ) . scatter measures using only results which have no reported
Linear elastic fracture mechanics leads the field of solifly|ations of ASTM E399 whatsoever. That is. results that
mechanics when it comes to explicitly recognizing the pregie free of any designation indicating concerns regarding
ence of singularities and attempting to interpret them in @y pjiance with the standard in Tables 3, 2, and 3 of Heyer
physically meamngful way. In |mp_lement|ng this activity, 'tand McCabé112], McCabe[113], and Underwood and Ken-
has made considerable progress in the last 50 years. At {i§i1114], respectively. We then average the scatter measures
time, the analytical tools for determining stress intensity fagy, found for the different materials tested with a given speci-
tors are well in hand. For most configurations, sufficientlie, type to obtain an overall representative measure of scat-
accurate determinations of stress intensity factors for pragiiy oy that particular type of specimen. Results are presented

cal purposes can be made either by drawing directly on Coffrapje 3. Given the considerable demands placed on testing
pendia ofK's (Tada et a[55], Rooke and CartwrigHt.09), by ASTM E399, the reproducibility oK. evident in this

Sih [106], and Murakami et a]107-109), or by applying (ap|e is a tribute to the effort and care expended by the vari-
suitably-adapted numerical methods that have been devgls |aboratories taking part.

oped. On the testing side, procedures have been well thought, 4| the implementation of & interpretation for crack-
out so as to limit plasticity effects and, thereby, enhance thg gingularities is a credit to the fracture mechanics commu-
applicability of LEFM. For fracture under monotonic load'nit . Hence, in considering how well suét interpretations

ing, the design of these procedures was led by Srawley afjfy the practice of them can generally be regarded as be-
Brown [110]. In essence[110] takes advantage of the CON'ing well done and reliable.

straint inhibiting plastic flow that is produced by increasing As, arguably, the most basic means of assessing how well
thickness. This constraining effect enables restriction of gq, interpretation of LEFM works we can check the degree

estimate of the yield region extent to being within about g, \ hich fracture toughness is truly a material property. That

percent % of the crack length. This in turn allows applicatio property for a given material which remaenstantor

of the approach to metals, afti10] is now the basis of @ jifterent configurations which are acceptable within the lim-
standard for the determination of plane-strimacture tough- ;¢ of applicability of the theory. One way of doing this is to

nessfor metallic materialsK,c. That is, the test procedure t0.ysider values oK . for the same material found by differ-
be followed to ensure limited plasticity when obtainiig.,  ont |aboratories over the years.

the critical value ofK, at which fracture commences for a |, undertaking this survey we draw upon compendia of

given metallic material. This standard of the American Soci, ,rces of such data assembled in Hudson and Sdasd

ety for Testing and Materials, ASTM E399, has furthe{;7) \aterials selected for inclusion in the survey are those
evolved since Srawley and Brovd10] to the point that itis \yith greater numbers of different sources furnishing results

S0 as to gauge the presence of any variability better. To this
Yt is also possible to regard Barenblatt’s approach as an “interpretation” of singular
stress fields, although it removes them. Viewed in this way, it too identifies K as the
parameter controlling fracture. 18A recent version of this standard may be found in ASTM1].
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Table 4. Variability in K.
Material Sample size Variability
Steels
4340:T1 14 +50%
4340:T2 32 +62%
4340:T3 39 +41%
4340:T4 29 +41%
Aluminum alloys
6061-T651 11 +25%
7075-T6 35 +51%
7079-T6 13 +44%
Titanium alloys
Ti-6A1-4V:P1 23 +39%
Ti-6A1-4V:P2 29 +62%
Ti-6A1-4V:P3 21 +49%
Ti-6A1-4V:P4 39 +61%
Ti-6A1-4V:P5 17 +43%

Fig. 18 Size dependence of fracture toughness

end, the following materials are chosen: four 4340 steels

distinguished by tempering temperatut@4—T4), three alu-

minum alloys, and five Ti-6A1-4V titanium alloys separategdpecimens? Furthermore, test pieces are quite geometrically
by processing(P1—-P3. Details of the different tempering similar, with cracks penetrating about half the widths of
temperatures and processing may be found in Hoysan apécimens and being about equal in extent to their thick-
Sinclair[118]. Values ofK . are included only if contributors nesses(see[111]). Therefore, loading type and geometric
claimed them to be in compliance with ASTM E399. Resultsroportions can be expected to cause little of the fracture
are summarized in Table 4. toughness variations reported in Table 4. In contrast, absolute

Results in Table 4 are drawn from over 50 different labaize is not completely dictated in ASTM E399. Thus size
ratories. When these testing laboratories repeated tests ofdffects are possible sources of discrepancy in a material's
same material made with the same sized specimens of ftecture toughness. We consider this possibility further next.
same kind, just the average value is kept in the survey. OnTo assess whether size has any effect on fracture tough-
the other hand, if one laboratory tested different materials, wess, we need results from tests performed on a single ma-
the same material but with different types of specimens, therial using a single type of specimen with size alone being
companion fracture toughness results from that laborataiitered. Sinclair and Chambef419] collects data of this
are viewed as being independent and included as multiglenre—specifics of the restrictions enforced to try to ensure
values. The total number of independent measurementst@dting varied solely as to size scale are described therein.
K. for a given material is designated the sample size in Focusing on plane-strain brittle respor(yeeld region, if
Table 4. Also in Table 4, variability for a single material isany, of extent less than about 2% of the crack lepdiiy. 18
represented as previouslie, =100 (1.98¢ /Ki)). presents results from 43 different papers which together con-

Evident in Table 4 is that there is considerable variation t&in over 800 distinct tests. In the figui¢ is the fracture
fracture toughness values. On average over all materials cttsghness determined via the smaller specinigl,via the
sidered, the variability is-47%, or a factor of 2.8 betweenlarger, withI" being the scale factor between the tithe
the lowest value and the highest. By way of comparison, tiigserted compact specimens witl'a 2 are merely intended
yield strength of the same materials varies on average tybe illustrative. While designated a§ . to reflect being in
+11%, or a factor of 1.2 between the lowest and the highetie plane-strain brittle regime, only about 30% of the frac-

Clearly, one needs to exercise care in obtaining a reptere toughness values used in Fig. 4 are claimed by their
sentative toughness for a particular material and using it gontributors to be valid in the sense of complying with
predict fracture in an attempt to guard against this event. ASTM E399. For some, being nonmetals, such compliance is
the material is one in Table 4, then taking the low end of tHot appropriate. For others, it is hard to tell completely.
spread should probably furnish a conservative estirfaie However, all were checked for compliance with the central
responding actual numerical values can be fourldi8)). If ~restriction of ASTM E399, namely limited yielding. Further,
the material is not one in Table 4, and no information igseparating those claimed as in accord with the standard from
readily available as to its distribution &f,., then dividing the remainder did not reveal any major differences between
an isolated value by a factor of three should probably furnighe two sets of results in terms of the ratisgd/K 2 for
a conservative estimate. different .

The foregoing raises the issue of the identity of the source For fracture toughness to be size independent, the ratio
of the substantial variations in fracture toughness reportediif/K 2 should be unity for all scale factofs(the solid line
Table 4, especially since these variations are significanity Fig. 18. Evident in Fig. 18 are clear demonstrations of
larger than the scatter indicated in Table 3. Current practice
for measuring fracture toughness applies predominanWthe compact specimen was formerly referred to as the compact tension speci-
bending loads to cracks in test pieces; for examp|e' thregen this designation was simply to reflect the means by which loading is applied,

. ; naFner by pulling. The peak nominal stress ahead of the crack is large99%0) due
point-bend, compact, disk-shaped compact, and arc-shapa@nding rather than tension.
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fracture toughnessbeing size dependentGiven that the of singular stresses. To this end, one could consider dispens-
range of variation oTKl(P/K% spans more than a factor ofing with any 2D or 3D stress analysis and predicting failure
four, such size dependence could be a source of at least stamemerely comparinghominal net-section stresshead of

of the variability found in fracture toughness. singularities with some suitable measure of material strength.

One should not be that surprised that, even when fract@ ainly this is a procedure which appeals in its ease of

is appropriately brittle in nature, the fracture toughness Ofiﬁwplementation. However, what Fig. 18 demonstrates is that

given material can vary by about a factor of three, quit§,ch an approach does not agree well with the physical data.
possibly due to fracture toughness being size dependefis s pecause it predicts strength size independence. That
Fracture toughness’ role as a material constant controlh@ it predicts Eqs(3.32 and the dashed line in Fig. 18. This
brittle fracture is the outcome of the hypothegs hypoth- e giction is almost an outlier of the physically measured
eses that led to theK interpretation for singularities. Being regponses. In contrast, at least fracture predictions based on a
hypothetical, this role may or may not be fulfilled in practicé jnterpretation capture the trend in the data. This superior
The phyS|caI evidence, in fact, §how§ that the hypothesgs,giciive performance can be attributed, in part, to the fact
underlying LEFM are not complied with, or at least, NOj4; ot least & interpretation recognizes the presence of a
closely so. _ . stress concentration, albeit with a somewhat nonphysical
~ Nonetheless, LEFM can take credit for predicting trendge,qure. Nominal net-section stress does not. Since, in real-
in the fracture of cracked components. By way of examplgy facture can be expected to be significantly influenced by
we reconsider the data in Fig. 18. For the Specimens iggess concentrations, this recognition realizes a significant
volved in generating this data, the stress intensity factors cqyy, advantage foK interpretations over ones made with
in general be expressed by nominal net-section stress. That said, there is no reason to
K,=oo\maf(a/w) (3.29) precludeT the use pf a frac;ture criterion basgd on pominal
, , . net-section stress in an adjunct role. Indeed éver failed
where o, is an applied stress, continues as crack length,, predict brittle fracture when the nominal net-section stress
and f(a/w) is a function of geometry withw being some o, caeded the ultimate stress of a brittle material, a nominal
other dimension of the specimen, such as the overall width &l section stress criterion should be enforced.
the crack plane. At fracture, therefore, for two completely \yhat about other alternatives that do attempt to recognize
scaled specimens, the influence of stress concentrations in singular configura-
KO=oP/raf(alw), KP=oPaTaf(l'a/Tw) tions? ngr the years, a number of the;e have been wittingly
(3.30) or otherwise suggested, and they continue to be used today.

All, in essence, draw on field quantities near but not at the

wherein the subscripit is now put on the applied gtre;se;t ingularity of concern to infer failure right at the singular
denote values at fracture. If fracture toughness is size inde-

pendent, Eqs(3.30 have riglnt. As a result they may be termeearby fracture crite-
KO/K@=1, ¢P16P=\T (3.31)  In implementing nearby fracture criteria, two choices

need to be made: what to monitor as governing fracture, and

That 1S, thg strlc;,-ngth r? ' stLesshat ;ra(;]ture decrﬁqse§ W'Fh Ihere to monitor it. With respect to the first option, several
creasing size. I, on the other hand, the strength is size in fossibilities have been entertained in the literature over the

pendent, Eqs(3.30 have years. Among these are measures reflecting stresses and
oPleP=1, K@/Kf?zll\/f (3.32) strains at the singularity. Stresses are usually used in elastic
R 11,2 .~ analyses and typically in complex configuratiofey, for
The ‘?'as*_‘ed Iln_e in Fig. 18 plots;c/Ki; of .Eqs.(3.32)._EV|— failure in composites as in Chanjis21]; and for biomedical
Qent in F|g. 18 is that nearly all the data lie above this ,daShﬁBplications as in Valliappan, Kjellberg, and Svensson
line. This means that nearly all the data comply with the 55 " Sirains are normally preferred when significant plas-
trend predicted by fracture mechanics of decreasing strengp 4,y accompanies fracturéeg, Belie and Reddy123),
of cracked components with increasing size. Unfortunately; ., and Hsu[124], and Cher{125]). Other quantities em-
all the data do not agree We_II with tharecise reducti_on ployed are the crack opening displacement of WEL26]
predicted by fracture mechanics, that of E@®31. Typi- anq the crack opening angle of Anders§aa7], the former
cally, this is the case for other predictions of fracture M, ing gained sufficient acceptance to have a British Stan-
chanps: Qualltauvely_they are correct, yet quantltauvelaard[lzg] and an ASTM Test Proceduf@29] to govern its
there is room for considerable improveméht. measuremerft While the majority of these quantities se-
lected in the role of governing fracture are for plastic re-
3.5 How well do other “interpretations” work? sponse, given that elastic precedes plastic it is fair to exam-

Given the potential for greater predictive capability, it id€ them all with respect to performance in the elastic

natural at this point to seek alternativesikainterpretations "€9!/Me. o , ,
All of the nearby fracture criteria concomitant with the

20The focus here of the assessmenKaihterpretations is on monotonic loading rather

than cyclic. This is because this is the simpler situation and accordingly where dti€rack opening displacement was independently introduced in Cqtt&4)] to effect
could expecK interpretations to perform best. Some evidence that this is in fact sbsomewhat different objective, that of classifying brittle fracture—see Burdé&Rifj
may be found in Sinclair and Pigiri20]. for a review of its role in fracture mechanics.
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above measures must make their comparisons at locatiémsr estimateK #0 whenK=0 in the first application, and
which areremovedfrom the actual singular point. This isall four find K=0 whenK#0 in the second. Such dramati-
because the elastic stresses and strains at a singularity Galey erroneous determinations can be attributed to the mis-
infinite while, for the case of the tensile crack, the displacehievous intent of the author of this article. Nevertheless,
ment and opening angle at the tip are fixed independenttbfy do indicate the potential of further discrepancies being
load level(being zero andr, respectively. introduced by the use of nearby fracture criteria.

Indeed, this quality of being removed, even if only by a At this time thenK interpretations of elastic singularities
short distance, is a principal motivation for selecting theepresent the best available. Properly implemented, they can
foregoing quantities in the first place, namely having a quaprovide qualitative predictions to guide in designing for
tity which is responsive to loading yet “measurable.” Suclstructural integrity. Quantitatively, they may provide satisfac-
measurement can be effected either via FEA or some ottiery predictions, but they cannot be relied upon to do so in
analytical method for nearby stresses and strains, or evenggneral. Hence, ultimately, one can expect that most designs
direct physical means for crack opening displacement ahésed orK interpretations are going to require specific and
angle. Nevertheless, the decision to withdraw from the actu#gorous testing.
singular point of concern should not imply a retreat from the
original objective of predicting failure at the singular point4 ANALYZING STRESS SINGULARITIES
It is therefore a logic requirement of proposers/users of
nearby fracture criteria to clearly identify what is their cor4.1 Asymptotic identification: Classical analysis

responding fracture criterioat the singularity Despite infer-  asymptotic characterization of elastic singularities can aid
ences in various papers to the contrary, the complexity of tigs stress analyst in two ways. In the first instance, it can
configuration being considered does not obviate one frofjkrt the analyst to the possibility of singular stresses—
this responsibility. “possibility” because whether or not local singular stress

Turning to a consideration of possible companion fractufg|ds in fact participate in a particular global configuration
criteria at the singularity, it is almost embarrassingly obvioygsyally depends on the actual far-field loading in that global
to make the following comments at the outset, but necessgphfiguration. If this possibility is realized, it is essential for
nonetheless given suggestions made in the literature. It isjflfy be appreciated if any useful information whatsoever is
exercise in futility to attempt to use nearby quantities to infgs pe gleaned from such a physically limited model. At
elastic stresses and strains at the singularity because theypi&ent, the best use of such a stress analysis is Wa a
unbounded there. Thus their true infinite values are uselggerpretation. This requires a definition of an appropriéte
for comparison with any corresponding finite limiting oneswyhich in turn requires the identification of the local singular
The fact thaestimate®f stress and strain at a singularity caffield present. This is the second way in which asymptotic
be finite reflects the limitations of the procedure used to d¢®aracterization can be of assistance.
the estimation, not physics. One simply cannot rely upon Several methods are available for analytically undertaking
errors in analysis to make a nonphysical field in a modgie asymptotic analysis of stress singularities in elasticity.
physically appropriate. Ultimately, with a sufficiently accuOne is the use of potentials together with separation of vari-
rate analysis, a large enough value of stress or strain at Hiftes. This approach appeals in its directness. It was first
singular point must result so as to exceed any finite corrgsed in Knein[28] to identify the singularity in a single
sponding limit imposed, irrespective of load level. Suchlastic configuration. Since, it has seen use in Williams
comparisons are therefore meaningless. Moreover, the sit[2p,133 and Kitover[134] to establish the eigenvalue equa-
tion is not improved in any real sense by introducing plastifons governing singularity exponents for a wide range of
flow (recall the discussion in Section 2.1 configurations. These equations are solved in Williams

Given the need for a bounded quantity at the singularity20,133 so as to explicitly identify possible stress singulari-
and one which reflects load levels, there would not seemties.
be any significantly different alternative t. In fact, K is Alternatively, complex variables may be introduced to
the explicit choice made in the elastic regime by criterigield an approach which is compact in its representations.
based upon crack opening displacement or angle. It follow$is method of analysis was first employed in H{i#35] to
that nearby fracture criteria cannot be expected to realize amyat the same class of problems as in Williaf@6], then
real improvement in predictive capability over that offeredhown in Williams[136] to lead to the same results as the
by K interpretations. earlier separation of variables.

Indeed, nearby fracture criteria can typically be expected These two methods were applied to elastic configurations
to be even less reliable. The reason for this is that attemptingving locally homogeneous boundary conditions. When lo-
to determineK from nearby quantities can be, in itself, arcal boundary conditions are inhomogeneous, transform
unreliable undertaking. A demonstration of this possibility imethods are natural to consider. BrafZ] does this for an
given in Sinclair[132]. Therein, two artificial applications angular plate comprised of a single elastic material, while
are constructed which each have known closed-form soBegy [137], following Tranter[138], uses the Mellin trans-
tions. Thereafter, nearby stress, strain, and crack opening digm for a bimaterial plate, and the Mellin transform has
placement and angle are used to irferwith all specifics of seen extensive use since. It is, though, quite possible to ex-
corresponding estimation procedures being set a priori. Allore the effects of inhomogeneous conditions using the
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original separation-of-variables method or complex varéhance of complying with these boundary conditions by vir-
ables. Essentially, all three methods enable the same idette of having four constants—two each fér and ¥—for
fication of possible stress singularities to be made. THeur equations. Accordingly we take

choice of which one to use is really a matter of personal _

preference for the analyst undertaking the asymptotics: WeW =r""*[c3 Cog\ —1) §+c4sin(A —1) 4] (4.6)

Zlheorgz(ranssi%irtatlon of variables here and describe its bav%cerecg andc, are the further constants. Hence, substituting

By way of a simple illustration, we reconsider the elastigqs' (4.5 and .(4'6) into Eq. SA]‘D re_ah_zes ax W'th. four_
onstants sharing a commoh* ! multiplier. Processing this

plate with a stress-free reentrant corner, or notch, and SLA”:y stress function, using Eqs4.3 and the Coker and
jected to tensile loadingrig. 16. The symmetry of the con- Fi#on relations, furnishes corresponding stresses and dis-

figuration enables attention to be confined to the upper hal . .
of the plate which, in terms of the polar coordinateand 6 placements. Thus we have, as diasic separable fields
of Fig. 16, is contained in € < ¢/2. Here ¢ is the entire o,=—Ar""c cogn+1)0+c,sin(A+1)6

angle subtended at the corner within the plate<® _

<2m). What we seek is the local character of the stresses (A —=3)(C3C0gN—1)6+cysin(A—1)6)]

o, 0y, andr,,, and displacements, andu, in the corner

_ A—1 H
of the plate(viz, asr—0). These fields are to satisfy the Tp=AI"[C1 oSN+ 1) B+ CoSiN(A+1)6

equations of elasticity together with the following traditional +(A+1)(cgcogN—1)8+c,sinA—1)6)]
boundary conditions: the stress-free conditions on the plate
edge, Tro=Ar* ey sinA+1)0—c,cogN+1)6

oy=T1,9=0 0On 6=¢/2 (4.1) +(A—1)(cgsin(A—1)f—c,cosn—1)6)] (4.7)
for 0<r<=; and the symmetry conditions ahead of the —rr
notch, u,=ﬁ[clcos()\+1)0+czsin()\+1)9

UQZO, Tr9=0, on 020 (42)

+(AN—k)(cz3cogA—1)0+c,sin(N—1)0)]

A
r
u(,:ﬂ[cl sin(\+1)#—c,cog\+1)0

for 0<r<w,

To construct appropriate forms for the solutions to the
field equations of elasticity for complying with the condi-
tions Egs.(4.1) and (4.2, we follow Williams [20] and let

the stresses be generated by an Airy stress fungtian + (A +x)(Casin(A—1)f—CyaCOSA—1)0)]

accordance with In Egs.(4.7), ¢, andc, of Eq. (4.5 have been exchanged for
1ay 1 % C;/(7\+ 1) andcz_/()\+1) so as to slightly simplify expres-
o=r ot sions, andu continues as the shear modulusas the func-
tion of Poisson’s ratio given in Eq1.3) et seq.
Px a1 ax Now applying the symmetry conditions Edg.2) gives
O'GZW, Trg:_ﬁ(? &—0) (43) _ B
C,=C4=0 (4.8)

plying the outstanding stress-free conditions Hdsl) to

Such stresses satisfy the equilibrium requirements: Providés
g remaining terms then yields th&x2 system of equations

x is biharmonic, they are also compatible so that compani
displacements exist. These may be determined with the ai
of an auxiliary harmonic function which is given in Section r*1Ac=0

2.45, Coker and Filoh139] (see also Williamg20]).

The determination of a biharmonjcfor Egs.(4.3) can be NcogN+1)p/2 N(A+1)cogN—1)p/2
further reduced to the determination of two harmonic func- 7| \ sin(A +1)$/2  A(A—1)sin(A—1) $/2
tions W andW, sincey admits to being represented by

x=V+r2@ (4.4) c=(§;> (4.9)

Separation of variables directly furnishes a candidktas . .
P y for 0<r<«. For this homogeneous system of equations to

W=r"1c cogn+1)0+c,sinA+1)6] (4.5) have a nontrivial solution, the determinant of the coefficient

wherein\, ¢, andc, are constantéthe choice ofA +1 as matrix must be zero. That is

an exponent rather than just follows Williams [20], and D=0 (4.10)
results in somewhat simpler equations folater. In select-

ing ¥, it is essential that the resulting involve a single WhereD is the determinant of.. Hence we obtain theigen-
power ofr. This is so that each of the boundary conditions iMalue equatiorfor our example as

Egs. (4.1) and (4.2) holding for 0<r< leads to but one

condition on the constants i¥ and ¥. Then we have a  \%(sin\¢+\ sing)=0 (4.12)
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The eigenvalue Eq4.1)) is for the eigenvalues, or charac-Williams [21]. For our illustrative example, the eigenvalue
teristic values, of the boundary value problem described Eyg. (4.11) is simply comprised of algebraic and trigonomet-
Egs.(4.1), (4.2), and surrounding text. ric functions of\. For other configurations, this essentially
Given ther-dependence of the stresses in Eds?), if we remains the case. Thus, since these functions are symmetric
focus onintegrable singular stressese can confine our in the complex domain, complex eigenvalues occur as com-

search for roots of Eq4.11) to the range plex conjugates. That is, as
0<a=1 (4.12) A=Exip (4.16)
Within this range, a root for each of two special cases {§ith 0<¢<1 as the counterpart of E¢H.12. For such com-
immediate: plex eigenvalues, the definition of equality in the complex
A=1/2 for ¢=2= domain assures that the real and imaginary parts of associ-
ated eigenfunctionsare each individually eigenfunctions in
A=1 for ¢=m (4.13) themselves. For example, tlog contribution too, of Egs.

The first of these gives the familiar inverse-square-root sifft:7); When\ is as in Eq.(4.16, becomes the two expres-
gularity of a tensile crack or a flat lubricated rigid punch og'0"S

a half-space(see Table 2, point®, and P3). For m<¢

<2, there is one real root fax satisfying Eq.(4.11): For o,=—Cqyré Y cogé+1) 0 coshyd(&cog 7inr)

0< ¢<r, there are no real roots. Actual values\afor ¢ in

the first of these ranges need to be found numerically. Re- ~ — 7Sin(zInr))+sin(§+1)6sinhno(£sin(7Inr)
E;Its S0 obtained can be fairly readily fitted to within 0.5% +pcog7Inr))]

o, =—ciré Y cog é+1)0coshnd(Esin(ninr)
+ncognlnr))—sin(é+1)0sinhno(écogninr)

- b —ysin(ninr))] (4.17)
p=1-5_, w<¢=2m (4.14)

wherec; is generally a distinct constant frooq . Evident in

The fit of (4.14) recovers the\’s of Egs.(4.13 and connects Egs. (4_1.17) is the oscillatory nature that accompanies com-
the two for othere. plex eigenvalues.

For any >, the associated singulaigenfunctioncan Returning to our illustrative example, the determination of
be assembled as follows. First, substitute the correspondfigenvalues of the form Ed4.16 proceeds routinely on
eigenvalue) from Egs.(4.14), into the fields of Eqs(4.7). Separating the eigenvalue Eg.11) into real and imaginary
Next, setc,=c,=0 therein in accordance with Eqh.8. Pars. Form<¢<2m, given 0<{<1, graphical arguments
Last, determine the relationship betwemrandc, from Egs. €an then be used to establish that there are no complex roots.
(4.1 when\ equals the eigenvalue, and substitute this reldhere are complex eigenvalues when1, though these do
tionship into the fields. By way of example, for the specidfOt 9Ive rise to singular stresses. There do exist other con-
case of a crack =), these steps giva=1/2 andcs figurations, though, for which complex eigenvalues do give
—2c,. Then, on exchanging, for K /227 so as to recover rise to singular stresses. Examples include the interface crack
the stress intensity factor, the stresses from E43) are; ~ and the adhering rigid indenteas for pointsP, and P in

Table 2 and Fig. 2 andb).
The foregoing analysis can be applied to other boundary
ol K 5 6(— 36
SNl cos; |, [0S
K,

conditions for in-plane loading, as well as to out-of-plane
Tro—
427

shear, bending within classical theory, and to composite ver-
sions of all of these configurations. However, there are some
further stress singularities and different types of boundary
conditions for which it is not immediately applicable. We
(4.15) ook to its adaptation to accommodate these situations next.
Displacements follow similarly from Eqg4.7). The stress 4.2 Asymptotic identification: Further developments
field of Egs.(4.15 is one form of the now classical, Mode I,An additional form of stress singularity results from enter-
singular eigenfunction for crack-tip stresses, originally idertaining logarithmic character. To investigate this possibility,
tified in Williams [140] and Irwin[84]. we need to augment the fields of E¢4.7) with ones con-
Another form of stress singularity can be directly identitaining Inr. To this end, observe that Eq&l.7) satisfy the
fied via the same approach. This type of singularity sterptane field equations of elasticity for any In fact, these
from complex roots to the eigenvalue equation, a possibilifields are continuously differentiable functions XafHence,
appreciated in Williamg20,133, and further amplified in because their-dependence is of the form ~1=e®-Dinr,

A =0.5+2.42563+6.3¢°

0 - 30
SII’]E‘FSIﬂ?
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they can be differentiated with respect Xato generate the

sought-after fields containing fn This is the approach *~‘InrAc+r*~*

adopted in Dempsey and Sinclg®9]. For the basic fields of

Egs.(4.7) it leads to, as ouauxiliary fields for 0<r<coe. In Eq. (4.19, dA/J\ is the matrix with ele-
a1 , ments obtained by differentiating all corresponding elements

op=—r""[(1+xInr)(c, cogA+1)f+c;sin(A+1)6) of A of Egs. (4.9) with respect to\. For our example, Eq.

+(2A—3+X(A—3)Inr)(C3c04N—1)0 (4.19 is a 2xX2 system. In general, it can be @ xXny

systemn, being the order oA. In either case, the first term
tCgsinA—=1)0)—N6(cysinA+1)0—cycodA+1)0  in Eq.(4.19 recovers our original determinant condition, Eq.

JA
—c+Ac’

X -0 (4.19)

- 4.10, for a nontrivial c. The second term requires some
+(AN—3)(czsin(N—1)f—c,cosn—1)0 ( '
( )(Cssin ) 4008 )9))] analysis to establish the necessary conditions for maintaining
go=r""(1+NInr)(c,cog\+1)+c,sin(A+1)6) a nontrivial c—essentially these conditions result from en-

suring a consistent or solvable system ¢or
Under Eq.(4.10, D=0 and the rank oA must be less

+cysinA—1)0)—N6(cysin(N+1)8—c,cogn+1)¢ than its ordem,. If the rank ofA is n,—1, then necessary
conditions for a nontriviat are

. D

==

+(2N+1+A(A+1)Inr)(cgcodN—1)0

+(A+1)(cgsin(A—1)f—c,cogn—1)0))]

7= (1+NInr)(cysin(A+1)6—c,cog\+1)6) 0 (4.20)
+(2A=1+A(A—=1)Inr)(c5Sin(A—1)6 That is, the eigenvalue is a repeated root. Equatidrz0
—c,cogA—1)0)+N6(c, cogh+1)0+c,sin(A+1)  are effectively the conditions that are noted to hold for a pure
logarithmic singularity § =1) with inhomogeneous bound-
X0+ (N—=1)(czcodA—1)0+c,sin(A—1)6))] ary conditions in Bogy{141]: sansD =0, Egs.(4.20 for A
(4.18) =1 are stated as the condition for a pure log singularity
under homogeneous boundary conditions in Bogy and Wang
[142]. Equations(4.20 are shown to be necessary for0
for 0<A=<1 under homogeneous boundary conditions, and
when the rank ,=n,—1, in Dempsey and Sinclaj29].
If, instead, the rank , is further reduced t;m,—2, np

N
usﬁ[(cl cogA+1)f+cysin(A+1)0)Inr

+(1+(N—«)Inr)(cgcogdN—1)O+c,Sin(A—1)0)

—6(cySin(A+1)0—c,cog\+1)6 —3,.., the conditions in Eqg$4.20 are not enough. Under
these circumstances, necessary conditions for a nontdvial
+(A—k)(czsinA—1)f—cscogN—1)0))] are
r* . gD D g 'AD
ug—z[(clsln()w—1)0—c2cos{)\+1)0)lnr :X:W:”W:O (4.21)
+(1+(N+x)Inr)(cgsinA\—1)f—c,coqr—1)0) This result is established in Appendix[29], for either pure

logarithmic singularities X=1), or logarithmic intensifica-
tion of power singularities X<1, see Eqs(4.18): It in-
+(N+k)(C3co0gN—1)8+cCysiN(A—1)6))] cludes the previous result Eq4.20. We note, however, that
c#0 and the existence of local fields of the form of Egs.
4.18 does not necessarily mean local logarithmic terms. It

+6(cpcogN+1)f+cysin(N+1)0

Together, the stresses and displacements of @gE3 con-
tinue to satisfy the field equations of elasticity because theI epossible for a nontriviat to exist yet the coefficient of
equations are independentiofthat such is the case may bg ..« he zero. This occurs far=1.c. = .= c.=0. andc
verified by direct substitution What now becomes apparent, o " .o 'roqis 19, e 4
is that the stresses of Eq#l.18 can also be singular when

L ) . . Returning to our illustrative example, there are no re-
N=1, the upper limit admitted in Eq$4.12), since then they e
ted ts to Eq4.1 thin th f Eq(4.12.
can go to infinity as Im whenr—0. ForA>1, though, they peated roots to Eqi4.11) within the range of Eq(4.12

i bounded wh 022 Therefore, there is no logarithmic character in the singular
remain bounded when-=4.~ - stresses because E@4.20 are necessary condition for the
The fields found via\-differentiation can be supple

ted by th vinating fields of E Wh “same. On the other hand, if instead of confining attention to
mented by the originating fields of Eq@t.7). en CoM- v mmetric loading in our reentrant corner example we had

bined in th'SdW?y’ thehctc;]nstantstne;ad_noElonger b(? tTe Saﬁ)éefnitted antisymmetric as well, we would have had a re-
so we now distinguish the constants in E¢s7) asc’. In- eated root for the case of a cratkz, for ¢=27 and\

troducing the combination into the boundary conditions i:1/2 with a multiplicity of 2. Accordingly Egs.(4.20

]?ur etx?mplle, the fearh.::‘rr] system Eg.9) now involves dif- would have been satisfied. Nonetheless, there is no logarith-

erent lunctions of, wi mic intensification of the singularity in this instance. This is
because the rank of the nowx4 coefficient matrix drops to

220ne might be inclined to try to employ the classical Michell solution for auxiliangyo for A = 1/2. and Eqs(4.20 are not sufficient under such

fields since it does contain log terms. However, in its usual f@gg) Art 43, Timosh- . o
enko and Goodief16]), this solution does not contain all the terms in E@s18. circumstances. Furthermore, E@4.21) are not satisfied so
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that no logarithmic intensification results. There are, though, Suppose in this example, the stress-free conditions of Eqs.
other instances in which Eq§4.21) are satisfied and loga- (4.1 are replaced with conditions applying a uniform shear
rithmic singular character is possible: Quite a number dfactionqg. That is, with

these are identified in Part Il of this review.

In summary, then, theingular stresses that are possible 79=0, 7y=0, on 0=¢/2 (4.23)
with homogeneous boundary conditidieiow as below, in for 0<<r<<ee. Now introducing into Eqs(4.23 the symmet-
what might reasonably be regarded as order of decreasiiggpart of the basic stress field, Eq4.7) with Egs. (4.8),
singular character. For any stress compongrdsr — 0, yields the 2<2 system

o=0(ré"tcog7Inr))+O(ré tsin(zInr)) =t Ac=q (4.24)
for 0<r<w. Here A and c are as in Eqs(4.9), and the

when D=0 for complex\=¢&+izn(0<£<1) vectorq is given byg=(0,q). For Eqs.(4.24) to hold for all

"D r, we
o=0(r*"tInr)+O(r*~1) when D=0, a0 set \=1. Then solving forc yields c;=qcsc¢ and c,
= —(g/2)cotp. Hence, for example, the shear stress is
for n=1,..np—r, and real \(0<A<1) _ sin2g \2s
o=0(r*"1) when D=0 for real A\(0<A<1) (4.22) 0= 95ing (4.25)
n . .
o=0(Inr) when D=0, — =0, for 0< A< ¢/2. Clearly_qj,,, o_f Egs.(4.25 complies with th_e
IN shear boundary condition in Eqet.23. However, what is
for n=1,.ns—r, and A=1, also clear is that there is a problem with the solution if the
. vertex angle is such that si=0. That is, if p=m, 27.
with c1+c5+c5#0 Thenr,, is everywhere infinitéhroughout the plate. Further-
in the auxiliary stress field of Eq44.18) more, the other stresses and even the displacements in this
_ solution are everywhere infinite. This sort of “singularity” is
o=0(cog7Inr))+O(sin(nInr)) no longer trying to reflect a physical stress concentration at

the plate vertex. Rather, it represents a total breakdown in the
solution procedure adopted, something which must be recti-
Herein,D is the determinant of the coefficient matdxre- fied before any physical interpretation is attempted.
sulting from applying boundary conditions, is the order of ~ The reason for the breakdown is that the fields used to
this matrix, and , its rank when is an eigenvalue. For the arrive at Eqs(4.25 are incomplete. To overcome this short-
single material plate in extension, at most=4. For bima- coming we follow Dempse143] and supplement them with
terial plates, both boundary and interface conditions are ithose of Eqs(4.18 with Eqgs.(4.8) applied. If we continue to
volved in assembling\: Then typicallyn,=8. And so on.  usec’ to distinguish the constants in the original stress field,
In the last of Eqs(4.22 we have included, as a type ofour system for solution becomes
“singularity,” stresses which in fact are bounded for=0. A
These same stresses, though, are undefined-f@. Conse- " inr Ac+ r*‘1<—c+ Ac’
quently, to a degree, they share with actual singular stresses I\
the futility of trying to use them directly in stress-strengtlior 0<r <w. We set\ =1 again so that the second term on
comparisons at=_0. the left-hand side of Eq4.26 becomes independent of
In addition to the types of singularity in Eqgt.22), it is like the right-hand side. Now, though, we still have a system
theoretically possible to have a combination of the first twavhich depends om by virtue of the Irr term. The vector
types in Eqs(4.22 when\ is a complex root of the appro- coefficient of this Irr term must therefore be zero. For the
priate multiplicity,n,—r 5. The actual occurrence of this lastproblem vertex anglesp= 7 and 2r, this can be arranged.
sort of singularity with homogeneous boundary conditions This is because the determinantAis zero for these angles
yet to be noted in the literature. It is also theoretically posvhenA =1 (see Eqs(4.9)): Indeed, in some sense it is the
sible to have log-squared singularities. Again, the actual ageterminant ofA being zero that causes the problem with
currence of this last sort of singularity with homogeneousese angles in the first place by prohibiting a solution to Eq.
boundary conditions is yet to be noted in the literature. It cdd.24). Consequently, we merely need to maia solution of
occur, however, with inhomogeneous boundary conditionsAc= 0 for D=0. Then it in concert witlt’ enables a solution
For inhomogeneous boundary conditions, any responske Eq. (4.26). For example, for¢=, a solution isc;
can include that for the corresponding homogeneous condi2c;=—4cg=—2g/m,c;=0. The corresponding shear
tions. Further, stress singularities typically stem from the hetress becomes
mogeneous boundary conditions, especially if we require any —2q
applied inhomogeneous conditions to be sufficiently continu- 7, ,=
ous. Even so, for some inhomogeneous boundary conditions,
logarithmic singularities can be induced. We illustrate how tior 0< < w/2. Clearly 7, , of Eq. (4.27) complies with the
treat this sort of response by reconsidering our symmetsbear boundary condition in Eq#.23. Clearly, also,r, , of
notch example. Eq. (4.27) is logarithmically singular at the plate vertex.

when D=0 for complexA=1+iy

=q (4.26)

[(1+Inr)sin 20+ 6 cos 20] (4.27)
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Given symmgtry fgr our plate of vertex angzbe'it realizes a —&,codA+1)0+(N+1)(E3sin(A—1)8

half-space with a jump in surface shear traction freig to R R

g. Accordingly, the log singularity present is akin to that at ~—4C0§A—1)8))+2(1+\Inr)(C3cos(A —1)6

P_8 of_TabIe 2 _and Fig. £ This sort of singu_larity is admis- +&,8iIN(N—1)0)— 2\ 0(E5SiN(A—1) 0

sible in elasticity and does reflect the physical stress concen-

tration that occurs at a step discontinuity in shear traction.  —&,cogA—1)6)] (4.28)
While the analysis leading to E4.27) and like expres- a1 2 N 2vA e

sions for the other stresses does solve the plate loaded by & " [(AInZr+2inr =2 67%) (€, Sin(A +1)6

uniform shear wherp=, it does not provide a reasonable —8,co0gN+1)0+(A—1)(C3sin(A—1)6
transition from stresses like that of E@L.25 as ¢ passes R R
through. In fact, from Eq.(4.25 it would appear that, for —C4c08A—1)0))+26(1+NInr)(Cycodn+1)0
¢ near but not equal tar, 7,, can be made arbitrarily large. +&,siNA+1)0+(A—1)(Escogr—1)0

To furnish a more sensible transition, Tifg44] supple-
ments the solution of Ed4.25 with its homogeneous coun- +84sin(A—=1)0)) +2(1+NInr)(C3sin(A—1)6

terpart (ie, the stresses fog=0). This leaves compliance
with Egs.(4.23 unaltered. By suitably adjusting the partici-
pation of these additional stresses, a reasonable transition +¢&,sin(A—1)6)]

from 7, of Eq. (4.29 through 7, of Eq. (4.27 can be whereing; andi=1, 2, 3, 4, are further constants. Similarly,

effected asp passes throughr. Such tranS|t|qns are Obt'T’um_:‘.dexpressions can be obtained for displacements. With Eqgs.
for the other stresses and for further configurations in Ti

[144]. Since they recover results found via E¢4.18), the r?&28), log-squared stress singularities may be possible.
appréach in Tind144] can be used just by itself - “May” because there are constants for this additional stress

Eiher v Dempsei1.43 s 144 or st by g 45T remve all i term ey 4, vet o
[144], a number of configurations that would otherwise have Y- @re ¢,

breakdowns in their analysis can be treated. Typically, thigta~ 0 €4# 0 in Egs.(4.28.

- : o In summary, then, theingular stresses that can be pos-
leads to logarithmic stress singularities when constant trac; . ' . . : :
. TR, - . sible with uniform tractions/linear displacements applied
tions are applied; “typically” because occasionally syste Bllow as below, in order of decreasing singular charater
like Eq. (4.24 with D=0 are still consistent because thq: ' '

augmented matrix also drops in rank. Analogous results hold" @Y stress component asr—0,
for linear displacements. J"D

—€4co0qN—1)0)+2\H(E;cogN—1)0

— 2 — —
Observe that, for these log singularities witthomoge- @ =ord(In“r)+ord(nr) when D=0, —= =0,
neousboundary conditions, the requirements in the last of o o
Egs.(4.22 do not apply. All that is required i®=0 when for n=1,.np—ra, C1+C3+C5#0
A=1. Indeed, ifD has a repeated root at=1, further fields . . .
other than just those of Eq$4.18 are typically needed. in the further auxiliary field of(4.28
These fields stem from further differentiation with respect to "D
\. As noted in Dempsey and Sincl4R9], this leads to IAr o=ordInr) when D=0, —==0,
terms. For the auxiliary field of Eq$4.18), it gives thefur-
ther auxiliary stress field for n=1,.np—r,s, €,=8,=83=0 (4.29)
or=—1"" (N IN?r+2Inr—\6%) (&, cogn+1)0 in the auxiliary field of Egs.(4.28
+CysinN+1)0+(N—3)(E3cogN—1)60 "D
2SI )6+ ( (€5 cos ) o=ord(Inr) when D=0, W#O,
+€48iN(AN—1)60))—26(1+NInr)(Eysin(A+1)0
— _ 2 2 2
—8,Cog\+1) 0+ (A —3)(E3SiN(A —1)0 for n=na=ra, citcz+c#0
—8,c04N—1)8))+2(1+\Inr)(E5coS8(A—1)0 in the auxiliary stress field of Eqg$4.18
+8,SiN(A—1)0)— 2\ (85 SiN(A—1) 0 provided throughout4.29)
—&4c09A—1)6)] N=1, rp#ra (4.30)

wherer »/ is the rank of the augmented matrix formed Ay
and the forcing vector attending the inhomogeneous bound-
+Eysin(A+1)0+(N+1)(E3cogn—1)6 ary conditions. The conditions in Eq&.29 and(4.30 can

be inferred from Dempsey and SincldR9] and Dempsey

go=r"" (N IN?r+2Inr—X\6%) (&, cogN+1)8

+&,8iN(AN—=1)60))—26(1+NInr)(€Cysin(N+1)0

24Some singularities possible with other inhomogeneous boundary conditions for plates
23There are other singular configurations wherein supplementary fields liké£48.  in extension are discussed in Part Il. In large part, these are self evident. Singularities
are needed to make the analysis complete. These involve concentrated loads. SeecEingalso be induced with other inhomogeneous boundary conditions for plates under
[145] for a review. bending: These are also discussed in Part II.
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[143]. When Eqgs.(4.29 and (4.30, or their analogues for shown to converge for<1). There is one such series for
other configurations, are satisfied, log singularities do resuach eigenvalue. Hence, for a series of eigenvalues, we have
Examples are given in Part Il of this review. When thesg series of series for eigenfunctions_

singularities occur, their participation is controlled by the Tpe preceding means of constructing asymptotic fields

local applied loading rather than far-field conditions. Whefas a5 4 direct consequence, that the part of the cohesive law
such local loading is nonzero, they must occur. Hence, t

use of the ord notation in Eq&4.29. As noted earlier, these at is active in determining eigenvalues is the str¢

singularities can occur in concert with the singularities folf,qs.(4.7), (4.33, and(4.34). That Is, cohesive laws h_ave
corresponding homogeneous boundary conditions. exactly the same effect on singular character as setting the

There is an additional type of boundary condition whicG{ress contained within t_hem to zero. Simil_ar outcomes hpld
requires further consideration. These are conditions whidR!' other boundary conditions which, on a first analysis, give
while homogeneous in themselves, promote equations whié$€ to equations that are inhomogeneous.iAn example is
are not homogeneous in theirdependence when the fieldsthe out-of-plane bending of plates within the context of
of Egs.(4.7) are introduced into them. For example, supposaxth-order theory. _ _
normal cohesive stresses are applied ahead of the notch inf Ne foregoing summarizes some of the analytical tools

our reentrant corner configuration of Fig. 16. Thus, that can be fairly readily applied to asymptotic singular
analysis within classical elasticity. As mentioned earlier, al-
oy=keu, on =0 (4.31) ternatives exist. Faced with a specific problem, the stress

) ) analyst could entertain using any of these approaches to
for 0<r <o is exchanged for the first of Eqigt.2), wherek,  check for the possibility of singular stresses. It is probably
continues as the cohesive law stiffness. Substituting Eqssier, though, to try to draw on the literature for a pertinent

(4.7) into Egs.(4.3]) then gives analysis. To assist in this activity, there already exist some
Kt reviews: for cracks, those in Atkins¢t48] and Hwang, Yu,
A e+ (A +1) e+ 26_[C2+ (N + k) C4]=0 and Yand 149]; for some bim_aterial plates, that in Murakami
H [150]. For other configurations, hopefully Part Il of the

(4.32) present review can help. In the event that no such analysis

for 0<r<co. Since(4.32 holds for allr and now involves €&n readily be found, one could perform the necessary as-
two distinct powers of, it is effectively two boundary con- YMptotics oneself. Ultimately, this may be necessary for in-
ditions. Taken together with the stress-free conditions of EJ§"Pretation. However, it may be more efficient at the outset
(4.1) and the zero-shear condition of Eqé.2), Eq. (4.32 O carry Qut a global anaIyS|s.' This is because, Whlle it is not
realizes five equations in the but four unknowisc,. Ilkely it is nonetheless possible 'th'at any associated stress
These equations cannot be made consistent for\any. singularities do not actually participate in the problem at

Therefore, no nontrivial solution exists which is simply off@nd if 5“ involves  local homogeneous boundary
the form of Egs.(4.7). conditions?® Under these circumstances, singularities do not

To overcome this difficulty, we form fields as series bj/ave to be asymptotically identified, and just a global analy-
replacing\ of Egs. (4.7) by \,=\+n, with corresponding sis suffices. We turn our attention to this activity next.
constants obtained on extendiogi=1,2,3,4) toc; ., then
summing onn. This series approach is the one adopted in
Sinclair[146] to handle heat conduction problems with CONa 3 Numerical analysis: Detection of singularities

vective cooling: It is also the one used in Tifg47] to

handle elastic plates with curved boundaries. With series #&orde_r to d_etect the actual presence of a stress singularity in
the fields, the cohesive condition of E@.31 becomes a configuration being numerically analyzed, we need to de-
sign a sequence of successively refined analyses which can

* reasonably be relied on to produce diverging maximum
ool +> [0 —keu, ]=0 (4.33) stresses, thereby revealing the singularity. The most chal-
No=A M=l xp=x+n Ap=A+n-1 lenging singularities to unearth in this way can be expected

to be the weakest, namely log singularities. Hence, we focus
attention on this type of singularity initially.
o To develop a scheme for detecting logarithmic diver-
o(rkl)+z o(r*" =0 as r—0 (4.34) gence, we follow Sinclaif151] and consider an analogy
n=1 with the numerical summation of series. For a series with

The lowest order terms in E¢4.34 areO(r1): Setting to g];jr:\gguvj\ilﬂr]nembersn, we form the partial surs, in accor-

zero the determinant of the coefficient matrix for these terms

enables one to determine an eigenvalyand corresponding n

eigenfunction constants; (i=1—4). For this eigenvalue, S3= > s (4.35)
the next terms ar®(r*) and serve to relates—cg to c;—Cy, n=1
and the terms thereafter relatg—cq, to c5—Cg, whence
C1—Cy4, and so fOFﬂ’(SGe Sinclaif67] for details). ThUS, each 2%Not likely” because usually the eigenfunctions remaining once the singular one is

i . X 7 removed have zero stresses at the singular point, and are therefore unable to represent
complete eigenfunction itself becomes a setvglsich can be nonzero stresses there.

for 0<r<«. The order of the terms in E@4.33 is
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For such partial sums, it is sometimes implied in texts offable 5. Numerical divergence in the presence of stress singularities

numerical analysis that convergence can be examined é)y faurat No. of interval . o .
. . ontiguration 0. of Intervals = ercentage
considering the sequence —analysis or elements Onom change

Sh,50,S5R, - - - (4.36) Periodic crack 32 4.49 —

. . . . under tension 64 6.22 39
With this sequence, the series sum is deemed to have cofntegral equation 128 8.71 55
verged if successive differences between sums decreas% in

. . . . eentrant corner 48 2.75 —
magnitude with the last difference being less than some pt&ger tension 192 3.99 45
scribed tolerance. That is, the convergence criteria for the—FEA with three 732 $-63 60
sequence of EC(.4.36) are node triangles 30 .83 80

Epoxy-steel butt 10 1.22 —

1S2— Sil>[Ssn— Sails  [Ssn—Sanl<e (4.37) joint under tension 40 1.49 22

i ; . —FEA with four 160 1.94 37
Alternatively, a more stringent test for convergence is basggle quadrilaterals 640 2.51 47
upon a sequence in which the number of members in partial 2560 3.23 59
sums is successively doubled. Then the convergence criteSigace step shear 16 1.12 —
node quadrilaterals 256 1.59 21

1S —Sal>1San—Sonl,  [San— Sonl<e (4.38)

Now consider the application of the foregoing criteria to

the particular instance of summing a harmonic progression, . . . .
b 9 prog Accordingly, we successively systematically halve dis-

namely, R cretization intervals for a sequence of at least three analyses
" q and examine whether the magnitude of differences in maxi-
Si= 2, n (4.39) mum stress values is decreasing. Initially, we favor uniform
=t discretization throughout as a means of readily ensuring sys-
Using an area estimate for E@.39 gives tematic refinement. We next demonstrate this approach on a
he12dn set of four sample configurations, each having a different
S~ J —=In(2A+1) (4.40) stress singularity present: The last three of these analyses are
vz N taken from Sinclaif 151].

While Eq. (4.40 is just an approximation, it does disclose The first configuration analyzed features a crack subjected
the logarithmic divergence of the sum in E4.39. Conse- 0 remote tensile loadingas in Fig. 14 but withw,= o,
quently, Eq.(4.39 represents a good series to test the cofz= V2, andF replaced by a uniform tractioo). So as to
vergence criteria of Eq4.37) and Eqs.(4.38) to see if they limit the extent of discretization, we in fact take a periodic

can detect divergence. array of such cracks sharing a common crack plane. The
Using Eq.(4.40 and the first sequence of partial sums isracks all have length& and a center-to-center separation
Eqg. (4.36), we have, fori large, from their nearest neighbor o4 An exact solution for such

a configuration is given in Westergadrtb2| and shows the
Si=Infi+In2 presence of inverse-square-root singularities in the normal
~In A QN O—ln1— stresses ahead of the cracks. To analyze the configuration, we
a=inf+2in2, - S~ Sh=in2-In1=0.69 (4.41) use an integral equation derived viayperiodic Flgmant line
a=InA+In2+In3, S33—S,~IN3—-In2=0.41 loads. In the numerical analysis of this integral equation, we
t%’gcretize the unknown as a piecewise constant on a set of

Continuing, successive differences equal the difference Is of | lenath. Gi iati fth
tween the natural logarithms of two successive integers. adniervars of equal iengin. Siven an appreciation of the pos-

result, the convergence criteria of Eqé.37) can be met sible singular character of this unknown, numerical algo-
since differences are decreasing in magnitude and eventu%ljgms of superior efficiency can readily be devised. Here,

can be made smaller than any prescribedhe first conver- ugh, we are proce_edlng as if we had such awareness
gence criteria of Eq94.37) thereforefail to detect that the and asking the numerics themselves to reveal any singularity
series is diverging present. Results from applying our unsophisticated numerical

On the other hand, the sequence with doubling has analysis are presented in Table 5 for the maximum transverse
normal stress ahead of a crackr,(,,), normalized by
Sp=InA+2In2, S;—Si=In2 oo(Tnom -

N The second configuration treated entails a 90° reentrant
Si=INA+3IN2, S4i=Sp~In2 (442)  Comer under tensiofas in Fig. 16 with¢y=37/2). The spe-
Thus, the first convergence criterion of Eq4.38 is not cific finite elastic plate chosen results from taking a square,
complied with, revealing the lack of convergence of thiwith uniform traction oy applied to its upper and lower
logarithmically divergent series. The second convergenedges, and cutting out a 90° corner on one side so that the
criteria of Eqgs.(4.38 thereforepasswith respect to diver- vertex of the corner is right at the center of the original
gence detection. This suggests adopting the analogue of Esggiare. For such a configuration, the strongest of the singu-
(4.38 when undertaking numerical stress analysis. larities for P5 in Table 2 and Fig. @ can be anticipated
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rilaterals. Results are included in Table 5 with 5, being the
peak principal stress at the point of application of the shear
step ando oy, being 4.

To examine convergence in Table 5, we take the differ-
ence inoy,ax/ onom for successive analyses normalized by
the ratio’s value for thefirst analysis and expressed as a
percentage. This process leads to the results under the col-
umn headed “percentage change” in Table 5. For these per-
centage changespo decreasewith successively refined
analysis reveals divergence and the presence of a singularity
(cf the first of Eqs.(4.39).

A% For the first two configurations treated, the percentage
change increases in a similar and pronounced way: This is to
be expected since they have very similar singularities. For
the third, with its somewhat weaker singularity, the increases
are less marked but nonetheless clearly evident. In fact, for
these first three, stress increases with grid refinement ap-
proach that expected from the singularity present. That is,
stresses increasing by a factor éf®@hereyis 1/2, 0.46, and

(b) 1/3, respectively. For the last with its logarithmic singularity,
the percentage changes remain constant, thus still indicating
this singularity’s presence even if only with a weak signal.
Hence singularities are numerically unearthed for all four of
our sample configurations.

The results in Table 5 support the use of systematic halv-
fmj of discretization lengths to reveal the presence of singu-

; ; : -0.4
sile loading. That_ S, we_expect stressesQu ) aST Jarities. However, they are merely a set of numerical experi-
—0, wherer here is the distance from the corner. Turning tg. .« ¢ \which _ the approach works—for  other

the analys_is of the configuration, symmetry enables _attemiggnfigurations/results it may not. For example, the magni-
to be conflngd to the upper half.of the plate. For th|§ UPPHides of the singular shear stress on the interface in the
half, we continue to proceed as if we had no appreciation 8 oxy-steel butt joint, as found on the same sequence of

the possibility of a stress singularity and simply employ thﬁ]eshes as used for the normal stress there, are as follows.
finite element method with uniform grids comprised of three ’

node triangles. The first grid has 48 such eleméFits. 1%), Tmax/00: 0.29, 0.40, 0.50, 0.61, 0.74
the second is formed by halving element sides to result in .
192 elementgFig. 1%), and subsequent grids are formed by % change: —, 38, 34, 38, 45 (4.43)
further halving element sides. Results are included in Tablée results in Eq(4.43 are consistent with a numerical
5, wherein .« is the transverse normal stress directlanalysis which is converging on the first three grids, even if
ahead of the corner ang,,, is oy. only slowly so. The later grids, though, start to diverge, re-

The third configuration considered is that of an epoxyealing the singularity present. What is happening here is
steel butt joint under tensiofes in Fig. 2). The steel is that, in addition to @(r ~*3 singularity, the shear on the
taken to be rigid and only the epoxy analyzed. The aspdoterface can have other regular contributionsr as0. The
ratio of the epoxy layer is set as 10:1. The Poisson’s ratio pérticipation of these regular terms here hides the singularity
the epoxy is taken to be approximately 3/8 so that stressedroin the coarser grids. Ultimately it has to show though.
O(r %) asr—0 can be expected, here being the distanceNonetheless, the possibility of regular fields concealing sin-
from points where the epoxy-steel interface meets the ogwlar ones to a degree underscores the value of an a priori
side surface of the speciméas for P, of Table 2 and Fig. appreciation of potential singular stresses, since such knowl-
2e). Finite element analysis is again unsophisticated and ussige tends to make one check a more extensive set of analy-
a sequence of uniform meshes, with the elements comprisggp for their actual realization. Such an appreciation may also
the meshes now being four node quadrilaterals. Results @r@ble the region of grid refinement to be confined to that in
included in Table 5, whereio, ., is the maximum normal the neighborhood of the potential singularity, thereby reduc-
stress on the interface where it terminates at the outer sing computational effort.
face, ando,,n, is the nominal stress at such a location. _ . _ . _

The fourth and final configuration treated concerns #h4 Numerical analysis: Resolution of singular fields
abrupt application of a shear traction to the edge of an elasitice a stress singularity’s presence has been detected, it is
plate(as in Fig. 2). The jump in the shear stress has magnirecessary tquantifyits participation if one is to effect K
tude 79. The singularity anticipated is logarithmias atPg interpretation. At this point, asymptotic identification of the
in Table 2 and Fig. 8. Finite element analysis is performechature of the singularity is no longer optional, but instead
on a sequence of uniform grids comprised of four node quagissential in order to properly define a stress intensity factor.

Fig. 19 Finite element grids for reentrant corner under tensipn:
initial grid with 48 elementsb) first refinement with 192 elements

because this is the singularity associated with transverse t
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With a definition ofK in hand, one can proceed with numeri- biguity as to the errors incurred in their numerical
cal assessment using either a boundary integral equation ap- analysis. This is probably best achieved teat prob-
proach or a finite element analysis. lems with known and analytical solutions. Alterna-

A good review of the early research on the application of tively, if two or more independent analyses of the same
finite element methods to singular elasticity problems is  problem employing different numerical methods have

given in Gallaghef153]. This paper was part of a first sym- converged to exactly the same answer to more than the
posium on numerical methods in fracture mecharilasx- number of significant figures being used in the ap-
moore and Owen[154]). Developments since, for both praisal, the problem can reasonably be viewed as a
boundary integrals and finite elements, are reflected in sub- benchmarkone and used.

sequent symposiel55-158. In what follows, we concen- iii) An extensive set of such problems should be analyzed,
trate on finite element analysis since it enjoys more wide-  with each member of the set being markedIfferent
spread use today. from all the others. Ideally, the set should be represen-

There are two issues facing the stress analyst when at- tative of all the decidedly distinct types of problem on
tempting the numerical analysis of a singular problem. First,  which application of the subject numerical method is
to resolve the singular fields themselves sufficiently accu- envisaged. Then it is reasonable to infer performance
rately numerically. Second, to extract from the numerics the in general practice from the numerical experiments.
associated stress intensity factor without diminishing thisiv) The evaluation should include a check@mvergence
level of accuracy. In this section we focus on the first activ-  In the case of FEA, this should be undertaken on a
ity. sequence of grids, with each grid being formed from its

With respect to resolution, a number of finite element  predecessor by refinement which is systematic, or
methods have been developed. These may be loosely catego- nearly so. In this way one can obtain an estimate of the
rized as belonging to one of the following three classes: computational level likely to be required should further
methods which add special elements, methods which use lo- accuracy be needed.

cal grid gradation, and methods which use superposition pigny evaluation that falls significantly short of complying
cedures. Special elements attempt to improve resolution \Rh the above should be viewed as preliminary, and possibly
introducing appropriately singular representations into the @ncouraging further appraisal, but nevertheless seriously lim-
ements immediately contiguous to the singular point. Grigbg in its ability to justify the general use of the numerical
gradation attempts the same goal by suitably increasing {d@thod under consideration. Preliminary evaluations are to
number of regular elements in the vicinity of the singulgse expected by the initial developers of novel numerical pro-
point. And superposition procedures attempt it by superimagures: Their contributions principally lie in conceiving the
posing analytical singular fields throughout the entire regigqyy approach in the first place, then explaining and demon-
of interest, then letting the regular fields in standard eleme@tﬁatmg its use. However, subsequent evaluations and com-
effectively correct boundary values so that they comply witharisons with other methods should, in essence, comply with
the prescribed conditions sought. In terms of implementg;e foregoing protocol.
tion, special elements typically take the least amount of ef- Returning to the evaluation of special elements formed by
fort on the part of the stress analyst. This is especially #splacing mid-side nodes, the originating papers are pre-
when the singular fields are introduced simply by moving thﬁninary in this regard. Henshell and Shats9] treats some
mid-side nodes of isoparametric elements. This techniquegjg problems that, as reported anyway, are not strictly bench-
developed for cracks in Henshell and Shgl89] and Bar-  mark problems in accordance with the protocol. Setting aside
soum[160]. The approach is generalized to apply to othgpjs |imitation, for only three of the problems is the same
singularities in Wait[161]*° Given the relative ease of grig used—the other three, therefore, can be viewed as cali-
implementation, if such techniques can provide sufficiepfating the respective meshes used to a degree. For the three
resolution in return for reasonable levels of computatiogith the common grid, one problem in some sense calibrates
they would seem to be the method of choice at this time. the approach while the other two are quite similar. Hence, in
Before describing an assessment of the resolution of tlgjﬁect, there is one trial problem in Henshell and Sia9].
particular method, it is appropriate to outline the elements @by this trial problem, stress intensity factors are apparently
an evaluation protocothat needs to be adhered to in ordegetermined to within about 1—2% using a modest amount of
for an appraisal of any numerical method to be meaningfomputational effort. Henshell and Shaw also do a conver-

i) The method needs to be completely prescribed wifffnce check on one of their problems: This exhibits diver-
respect to how it is to be implementextior to any 9ence in computingl between a coarse a.nd a medium grid,
testing. Under these circumstances, there is no mixifyt convergence from the medium to a fine. Barsqas0)
of the calibrating of any adjustable parameters in trRhalyzes only one 2D elastic configuration which again is not
method with true testing of the same. established as a benchmark problem within the paper. The

i) The problems employed must have no ambiguity as RfPer uses several different mesitetich together do not

what are their correct answers so that there is no aRnstitute a convergence checknd suggests that quarter-
point elements formed from six node triangles have superior
26Further references on the use of such elements may be found in Lim, Johnston, gr%curz_icy to correspondlng elemen_ts formed from elght node
Choi [162]. guadrilaterals. Barsoum also considers a thermoelastic and a
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3D application. In sum, the main thrust of Henshell and
Shaw [159] and Barsoum[160] is the development of
quarter-point elements for the FEA of cracks, and demonstra-
tions of its potential. This is well done in the two papers:
Thorough testing of the approach, on the other hand, is not
attempted.

Meda and Sinclaif163] provides an appraisal of the ap-
proach which adheres to the previous protocol in large part.
Therein, a series of crack problems are analyzed using the
quarter-point elements dfL59,16Q. The problems seek to
simulate some of the variety of physical effects encountered
in applications. The first configuration considered to this end
involves a periodic array of cracks, all of lengtla 2vith
center-to-center separations d8 2and under far-field trans-
verse tension. By considering different spacingéB=1/4, Fig. 20 Local arrangement of quarter-point elements at a crack tip
1/2, and 3/4, crack interaction effects can be studied. Théollowing ANSYS recommendations
second configuration represents a round compact tension
specimen: Herein, loading is predominantly in bending in-
stead of tension. The third configuration simulates cragfyjar elements are chosen over quadrilateral since the singu-
opening loading: This is basically the same configuration g fields are then present within the element on all radial
the second except that loading is displacement controllgdys originating at its vertex, rather than just along its edges
The fourth configuration reflects crack arrest by placing thgs is the case for quadrilateral elements. To be consistent, six
crack tip in close proximity to a stiffener. The fifth and finahode triangles are used as host elements. The local arrange-
configuration is a slanted crack under remote tension: Thisrifent of the quarter-point elements follows ANSYS recom-
a mixed-mode situation. Together, the five configurations rgrendationsChapter 3[32)). It features a fan of congruent
alize a total of seven different problems. isosceles triangles spreading out from the crackFig. 20).

All of the problems are test problems in that they haveach triangle subtends an angle#/6 at the tip and has an
known closed-form solutions. For the first problems with thgititude which is about one eighth of the crack lengtfihe
different crack spacings, these solutions can be taken dire&mainder of the mesh is generated automatically using the
from Westergaard152]. Notice, though, that Westergaard’sscommand AMESH(Chapter 9[32]), since this is a conve-
treatment applies a uniform transverse tension at infinityient means of doing so, and one likely to be employed in
Since FEA requires that we treat a plate of finite height, thgactice. This procedure is adhered to for all problems to
solution in[152] must be evaluated at the height chosen anfénerate their baseline grids. These grids are taken as such in
the stresses found used to apply tractions there. While sup first instance because they are essentially the grids rec-
tractions are nearly the same as those for simple tensi@mmended by ANSY$32]. Furthermore, in practice, like
when the height is greater than the crack spacing, they gfids should probably result in no more than an order of
differ a little. The inclusion of such differences is essential thagnitude greater number of degrees of freedom, and ac-
one is to formulate a problem with a true exact solution usingrdingly be computationally tractabléhe maximum num-
[152]. For problems entailing the next three configurationger of degrees of freedom for the baseline grids used being
exact solutions are constructed by the superposition of fing33.
sets of eigenfunction§dentified using Williamsg[20]). The To examine convergence, baseline grids are coarsened
resulting sums maintain stress-free crack flanks and symnagd refined by approximately quadrupling and quartering el-
try conditions ahead of the crack. They do not replicate tlgnent areas, respectively. The grid refinement is not system-
boundary conditions elsewhere that perhaps one would mast, though it is nearly so. This is because of the continued
naturally apply, but do reflect the character of the loadingse of the convenient automatic mesh generator, AMESH,
sought. In any event, whatever conditions they do realize arhich is not completely systematic in its element configura-
the remainder of the boundary are taken to be, in fact, thiens. It is also because of the different types of elements
exact conditions thereon. Thus, these sums themselves iawlved: That is, because the number of quarter-point ele-
the exact solutions to the problems so posed. The last prabents remains constant while the number of host elements
lem solution is obtained by combining the solution for @hanges. Around the crack tip, though, the arrangement of
crack under uniform tension at infinitisee, eg, Tada et al Fig. 20 is preserved with element altitudes being doubled
[55], pp 1.20, 5.1, with the corresponding solution for uni-and halved, so that locally grid refinement may be viewed as
form shear of Irwin[164]. As for the first problems, thesebeing systematic. These pairs of additional grids are also
solutions must be evaluated at finite stations in order to malsed in the FEA of all seven test problems.

a precise statement of the problem. In evaluating the resolution of the finite element analysis
For the analysis of this series of test problems, twia Meda and Sinclaif163], we focus on the stress intensity
guarter-point elements are available: one obtained from eidattors computed via it since these are the key results from a
node quadrilaterals, the other from six node triangles. Triapractical perspective. However, in making this choice, we are

Z Crack \<——a/8—*'

Elastic plate
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Table 6. Resolution ofK fields using quarter-point elements terms of the previous rating scale, accuracy is excellent in 18
Test Number of elements Absolute problems, good in 8, and satisfactory in 1. In 33 of the 34
3r0b'e_n:_ Usec?_ in Coaésf_e' . Peme_nti?e problems, values oK computed are converging throughout

eseripion medium and fine grias errorin the three-grid sequence employed. In the other probkem,
Periodic crack 174 1 values are diverging from the coarse to the medium mesh,
under tension: 620 0 b . f h di he fi d h
a/B=1/4, 1/2, 3/4 1959 0 ut converging from the medium to the fine. Based on t e
number of elements used, the average convergence rate is

Round compact o 1 about halfway between linear and quadratic
tension specimen 328 0 y a .

1207 0 In sum, therefore, the quarter-point elements of Henshell
Specimen with 97 37 and Shgvx[lsg] and Barsourrﬁ160], when arrangeq around a
crack opening 328 4 crack tip in accordance with the recommendations of AN-
loading 1207 5 SYS|[32], would seem to offer good levels of resolution of
Crack arrest 97 4 the singular _fields involved in return for qu_it_e modest_ Iev_els
at a stiffener 328 2 of computation. In general, then, the shifting of mid-side

1207 1 nodes on isoparametric elements would appear likely to pro-
Mode | for ‘Zlég g vide a means of numerically analyzing singular fields with
slanted crack ; ; ;
onder tension 2882 2% more than adequate accuracy, and doing so fairly readily.
Mode I 288 10 - - -

2000 4 4.5 Numerical analysis: Extraction ofK’s

With respect to extraction, a variety of procedures have been
suggested over the years. Probably the most obvious first

unfortunately combining an appraisal of singular field res@pproach is to attempt to take advantage of an appreciation
lution with one ofK extraction capability. Provided the latterg the asymptotic character of a singularity to fit local
is consistently reasonably accurate, we should still be abled@esses or displacements and, thereby, estimate stress inten-
infer the effective levels of singular field resolution obtainegity factors. An early development of suldeal fitting meth-
(we examine the issue &f extraction in the next section s is Chan, Tuba, and Wilsofi1l66]. Alternatively, for

With respect to the accuracy sought, we view 0—1% erTgfacks, one can obtaid by computing energy release rates
as excellent, 1-5% as good, 5-10% as satisfactory, and(as in (3.5), (3.9), and (3.9)). Several distinct implementa-
greater than 10% as unsatisfactory. In justification theregfyns of this approach have been put forward. The most
given the likely level of agreement between physical regigely practiced is via thel integral of Rice[88]. Others
sponse and predictions made Wa we can expect an excel-inclyde the stiffness derivative technique of Pdrks7], and
lent analysis, and even just a good analysis, to leave thig virtual crack extension method of Rybicki and Kanninen
agreement largely unaltered, while a satisfactory analy$ifsg]. The virtual crack extension method uses local results
probably would not impair it significantly. to estimateG, henceK: accordingly it qualifies as a local

The number of elements actually used and the COMftting method. Thel integral, on the other hand, ispath-
sponding errors in stress intensity factors are summarizedi,illaependem integradnd consequently does not have to draw
Table 6(the same errors are obtained for all three separatiofs |ocal fields. Park§167], in an Appendix, shows that the
in the periodic crack problemOn the baselinémedium  giifiness derivative technique is an area-analogue oflthe
grid, the average absolute error is 2.4%, with four results pfiegral, so it also does not need to rely on local fields. This
excellent accuracy, three with good, and one just satisfactogya positive attribute since fields close to any singularity can
With the exception of the problem with crack opening loadse expected to be the least accurately determined via numeri-
ing where results have yet to converge in going from thgy analysis. A further set of procedures for extractig
medium to the fine mesh, all results are converging.  which share this attribute are based on specially developed

A further evaluation of the resolution of quarter-point elpath-independent integrals. These integrals are constructed
ements which largely adheres to the protocol given here MBY an adroit invoking of Betti's reciprocal theorem: This
be found in Cooper et 4lL65]. This features more displace-jgads to integrands that are akin to those in Somigliana
ment controlled/Mode Il loadings, the two situations Whicﬁhtegralszj The method of construction has its origin in Stern
would appear to promote the greatest errors for the approggg]. The integrals that result are devoid of the direct physi-
(Table 6. All told, 34 test problems are constructed ¥65], ¢4 interpretation ofl, but are computationally more adapt-
with 18 being Mode |, 16 Mode II, and half for each mod@pje. For cracks, as a consequence, they can readily distin-
having prescribed displacements. They are analyzed Usﬁlﬁsh between different modes, as in Stern, Becker, and
the same elements and mesh generation scheme as in M§ganam[170]. They can also be adapted to the fixed-free
and Sinclair[ 163] (ie, following ANSYS[32] recommenda- ¢orner, as in Stern and SdHi71], and the interface crack, as
tions coupled with easy-to-implement automatic mesh gef- Hong and Sterfi172]. Others have since taken advantage

eratior). This results in a baseline gl’ld of 276 e|ementS, ar& the ideas underlying the construction of such path_
coarse and fine grids of 57 and 916 elements, respectively.

For the baseline g_l’ld, the aver_age abSOIUt_e err(bf iior all 27\ statement of Betti's reciprocal theorem may be found in Art 121, Lpl2]:
34 test problems is 1.6%, while the maximum is 5.9%. Isomigliana integrals Art 169, ibid.
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Table 7. Comparison of someK-extraction methods using Pang and Leggaf180]

Trial Measures J via Crack-flank Virtual Stress fit
problems of apparent stiffness displacement crack ahead of
involved absolute error derivative fit extension crack
No. 1 with Average 0.5 1.2 2.3 3.8
8 grids error (%)
Accuracy 8e 5e, 3¢9 89 649, 2s
distribution
Nos. 2-8 Average 2.8 3.0 — 4.7
error (%)
Accuracy 6e, 10g 4e, 129 — le, 11g
distribution 3s 3s 6s, 1u

Key: e...excellent0-199, g...good (1 —5%), s...satisfactory (5-10%), u...unsatisfactory10%)

independent integrals to develop them for further singul&=0, and vice verse’® Moreover, the approach therein can
configurations. Examples include the stress-free reentréduatadapted to ensure the downfall of any local fitting method
corner in Carpentdrl73] and in Sinclair et al174], the butt once the specifics of how it is to be implemented have been
joint in Okajima and Sinclaif175], and the bimaterial reen- decided. However, these types of demonstration are for con-
trant corner in Carpenter and Byefd76]. The path- trived test problems, so that there is an open issue as to the
independent line integral of Okajima and Sinclgi75] can degree such difficulties are actually encountered. To address
also be found in Banks-Sillsl77], together with an equiva- this issue, we draw on evaluations in the literature.
lent area integral. The originators of local fitting methods as a means of
At the outset in evaluating these competing techniquesxtractingk from numerical analyses—here Chan €ftlfi6]
local fitting methods appeal in their ease of implementatiamd Rybicki and Kanninefil68]—understandably perform
and adaptability to different singularities. However, oncgreliminary evaluations that showcase potential applications
corresponding path-independent integrals have been devather than establish accuracy levels for a diverse range of
oped and made available as algorithms within standatdie test or benchmark problems. Further, they do not employ
codes, implementation typically requires little if any extraheir methods in conjunction with quarter-point elements, the
effort on the part of the stress analyst. Further, using Stergglected approach for resolving singular fields. The same can
approach, path-independent integrals are quite adaptable h8Gsaid of the originators of path-independent integrals as a
the initial advantages of local fitting methods can be exneans ofK extraction—here Parkgl67] and Stern et al
pected to be of no great consequence in practice as the der0].2° Turning to evaluations that do use quarter-point ele-
velopment of path-independent integrals continues. Therengents, two limited assessments are available in Banks-Sills
though, an inherent deficiency in local fitting methods that ind Shermah178], Pang[179], and Pang and Legggt80].
of concern in practice. In Banks-Sills and Shermafil78], three planar crack
This deficiency stems from the fact that local fitting methproblems are analyzed, two being quite similar to each other.
ods fit quantities near but not at the singularity. They mushese problems are not true test problems, nor are they
avoid the singular point because stresses there are HQalified in[178] as benchmarks in the sense defined earlier
bounded and therefore not fitting, while displacements &j¢the evaluation protocol. However, they could be accepted
zero leaving nothing to fit. Given such necessary backing off the latter role with a less stringent definition than that
from the singular point, other regular fields can participate lidopted here. The best crack-flank displacement fitting pro-
any fit. This participation cannot generally be either comtedure considered results in an apparent average error of
pletely accounted for by any local fitting method, or comg.99s, with excellent accuracy for two problems, good on the
pletely eliminated. As a result, local fitting methods have thg&her one. The path-independent integral used,Jtmegral
potential to be unreliable in their accuracy. That is not to s} evaluated either directly or by the stiffness derivative
they cannot furnish accurate, or even occasionally extremedthnique, results in an apparent average error of about 0.2%
accurate, estimates &f: Just that they can also provide unwith excellent accuracy on all three problems. This limited
satisfactory estimates. evaluation, therefore, would seem to indicate that path-
One might think that all that is required to overcome sudidependent integrals are more accurate than local fitting
deficiencies is to develop a better local fitting method. Loginethods.
cally, though, this cannot be done in any complete sense. To|n Pang[179] and Pang and Leggél80], an extensive
explain further, any fit must matchfanite number of quan- set of crack problems is analyzed. The set entails five quite
tities. Hence, since singular configurations can havénin  distinct configurations, eight different geometries, and

nite number of regular eigenfunctions participate in additiofventy-seven different analyses/stress intensity factors. None

to their singular ones, there always exists the possibility of

some bemg left un_accounted. Inde_ed_' the ex_lstence _Of S_ sentially, this is the same characteristic of local crack-tip fields as

unfitted eigenfunctions at a crack tip is what is exploited iemployed to produce the erroneous results for nearby fracture criteria that are
: ; : scribed in Section 3.5.

Sinclair [132] to cause the Complete Inaccuracy of Sever&T?ice [88] introduces theJ integral to a different end and accordingly does

local fitting methodgie, to have them estimat€ =0 when not attempt any evaluation of it as a numerical tool.
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Table 8. Evaluation of two K-extraction methods ber (12). Half of the latter instances entail errors that are
Test Absolute error H Crack-flank  greater than 20%. Moreover, while performance can gener-
problems measures for via direct displacement ||y be improved by grid refinement, this is not always so:
involved baseline grid integration fit

The displacement fitting procedure yields results which are

7 (with 8K’s), Average 2.4 10.6 ; ; ; ; .

from Meda. & error (%) nqt converging on going from a k_)aselln_e gr!d to a yet finer
Sinclair[163] Accuracy 4e, 3g 4e, 1g grid on seven occasions. What is making its presence felt

distribution 1s 1s, 2u here is the inherent unreliability of local fitting methods.

34, from Average 1.6 9.3 The H integrals of Stern, on the other hand, almost uni-
Ctoolpelz3 . error goc) 186, 15 26 10 formly provide good to excellent estimateskfon baseline
etall163] distributﬁén 1s 9 7s 103 grids. Moreover, the two instances of mgrely gatisfactory ac-
Key: e...excellent0-19, g...good (I ~5%), s...satisfactory (5-10%), CUracy converge to at least good on grid refinement. Actu-
u...unsatisfactory % 10%) ally, what is being displayed here is not the accuracyHof

integrals in extractind<: They essentially do this exactly, as

can be established by feeding the integrands in their algo-
are strictly qualified as true test or benchmark problemdthms exact values of the field quantities called for instead
though they could be viewed as the latter with a less strinf finite element estimates. Thus, what is being shown is
gent definition. Local fitting methods considered include diseally the accuracy of the FEA determination of the fields in
placement and stress fits, and virtual crack extension. Patthese singular test probleri$This accuracy is more than
independent integrals considered include théntegral as adequate provided fields in the quarter-point elements them-
calculated directly or via the stiffness derivative techniqueelves, as well as those immediately contiguous to them, are
Results for the best displacement and stress fits, as well asagbided. This can readily be done by taking a path which lies
those available from virtual crack extension and for the outside these elements when computing tnintegral:
integral computed via the stiffness derivative technique, ay@here precisely does not matter as long as these inner ele-
summarized in Table 7. The apparent order of decreasig@nts are not on it.
accuracy isJ integral, displacement fit, virtual crack exten- |n Meda and Sinclaif163], there is a further comparison
sion, and stress fit. When tleintegral is computed directly, of anH integral withJ. SinceJ by itself cannot distinguish
apparently the average absolute error is 1.4% with excellg@tween different modes, the comparison does not include
accuracy in six instances, good in three: For $hiategral  the mixed-mode test problefhOn a common subset of five
computed via the stiffness derivative technique on the samg; problems analyzed on the baseline glidyerages 1.0%

set, apparently the average absolute error is 1.7% with excglsolute error i<, while H averages 0.4%. Hence, if any-
lent accuracy in three instances, good in six. Hence, if aN¥jing, this limited evaluation would indicate that is
thing, this limited evaluation would indicate that direct Calélightly more accurate thah

culation ofJ is slightly more accurate than via the stiffness The foregoing discussion focuses on 2D analysis. To a

Qerlvatlve. Irr'espectlve of the means of computation, patﬂégree, similar capabilities are available in three dimensions:
independent integrals would definitely appear to be more e Banks-Sill§181] and Meda et al182]

curate than local fitting methods in Pang and Ledd&u). In all, therefore, path-independent integrals can be ex-

In the earlier cited papers, Meda and Sincldi63] and : -
: pected to be more reliable than local fitting methods as a
Cooper et aJ165], there are also contained assessmenks of . . .
means of extracting stress intensity factors. There are under-

extraction methods. These assessments do basically adheieino reasons to think this miaht be so. and evaluations to
the evaluation protocol. The two methods so evaluated age 9 9 '

crack-flank displacement fitting and path-independent int ate demonstrate that it is. Hence, path-independent integrals

grals developed & Stern. For the first, its specifics are givel’?‘lre t_o_ b(_a preferred in pracuce._ For c;racl_<s,_ the choice O_f a
in ANSYS [32]: Reasons for believing the particular ap-Spec'f'C integral and t_he way in Wh_'Ch itis compute_d IS
proach prescribed therein is amongst the best of its ge ely a matt_er of e_xva|lab|I|ty/conven|en_ce. For other singu-
available are given in Cooper et[dl65]. For the second, the a7 configurations, it may well be that integrals developed
precise forms of the integrals used are given in Sinclair et @Pnd the lines of Stern and his coworkers are the only option
[174], wherein they are dubbed integrals. Both approachesfor obtaining a correspondlng path-mdependeryt mtegral. .
are applied to all the test problems for planar cracks that areWhen path-independent integrals are used in conjunction
set out in[163,169. Implementation is in concert with the With isoparametric elements with mid-side nodes shifted to
same arrangement of quarter-point elements as earlier. [&flect the stress singularity present, more than adequate ac-
sults for the errors incurred on baseline grids are summariZg#facy in the resolution and the extraction of stress intensity
in Table 8. factors can be obtained in return for reasonable levels of both

Evident in Table 8 is that the displacement fitting procdMplementation and computation. Other approadses, eg,
dure on baseline grids typically leads to barely satisfactok}54—158), in concert with path-independent integrals, can
estimates oK. What is more disconcerting is the scatter in
performance. While this local fitting method produces estft follows that our previous use dk to assess FEA resolution is not polluted by

f extraction error becaude integrals are employed in this appraisal.

mates of.excellent apcuracy for a number of problém it 31The J integral can be supplemented by a further path-independent integral to enable
also furnishes unsatisfactory estimates on a comparable nuparticipation of different modes to be distinguished: see Ch 5, Cherepafov
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offer comparable and even superior accuracy for the sameg=ord(Inr)
computation levels, but can take more effort on the part of
the stress analyst. o=0(Inr)

o=0(cog 7Inr))+0O(sin(nInr))
5 CONCLUDING REMARKS
In classical elasticity, stress singularities can occur und®f’— 0 Whereiny is the singularity exponent (0y<1),
point loads, line loads, and so on. They can also occur awdyd 7 i the imaginary part of the eigenvalue involved. In
from any such concentrated loading. Then typically they rg-qs-(5-1)3 Ols assomgted with |0_0a||y homogeneous t_)ound-
flect, albeit crudely, physical stress concentrations. In tHf&y_ conditions, ord with locally inhomogeneotsrd being
role, these singular stresses direct attentiomherefailure 9€fined in Section 1)2Corresponding stress fields for plates
is likely to occur, but are useless in themselves for predictidgy €xtension may be found in Section 4.1, E¢6.7) and
whenit occurs. It is this latter type of singularity that is of( 17 (y=1-\,1-¢, respectively, and in Section 4.2,

concern in attempting to ensure structural integrity. Accortrds: (4.18 and (4.28 (y=1—N\). Further corresponding

ingly, this type of singularity is the focus here, as well as igtress fie_lds for Q'Fher configurations are gi.ven in Part I, to-
Part Il of this review. gether with specifics of the numerous configurations that en-

When stress singularities occur away from concentratdg§nder such smgulanﬂé:%. _
loads, they do so in concert with discontinuities. These dis- With respect tonumerical methodsthe presence of sin-
continuities can be in boundary directions, or in boundadHlarities can beletectedby the divergence of peak stress
conditions, or in elastic moduli. While such discontinuitie¥@!ues. Evidence of divergence requires a suitably refined

do not have to have associated stress singularities, often tiggluence of discretizations. The sequence recommended
do. Discontinuity singularitiesare thus far from rare in elas- here halves discretization intervals on a sequence of at least

ticity (Part Il of this review amplifies their occurrence fur-three analyses. Wi_th thi? app.roach in 2D FEA, element num-
ther). bers quadruple with grid refinement. In 3D FEA, element
At the outset in dealing with discontinuity singularities, i 'UMPers increase by a factor of eight. Even with such levels

is essential that thejparticipation be recognizedDtherwise ©f cOmputational effort, there is no guarantee that a singular-

one risks making stress-strength comparisons in their pré¥-Pe detected. However, numerical experiments to date in-

ence, an exercise in futility. Given recognition of a discont@icate that one is reasonably likely to unearth a singularity’s

nuity singularity, the engineer has three options in seeking REeSence with the approach.
ensure structural integrity. Once a discontinuity singularity is known to be present,

_ _ _ _ . the singular fields active require spediakerpretationif they
i) To rely primarily on testing and forego analysis, othesre to be used. The foremost such interpretation in elasticity

_ than perhaps nominalD) stress analysis. takes the coefficient of the singularity, the stress intensity
i) To proceed with classical stress analy@® or 3D), factor K, as the parameter controlling brittle fracture and
then try to interpret the stress singularity. failure in general. This remains the basic tenet of linear elas-

iii) To improve the modeling so that the singularity is retic fracture mechanicL.EFM) even today. While LEFM is
placed with physically sensible stresses that can kencerned primarily with the stress singularities at cracks, it
compared with strengths. is possible to consider extension of its basic tenet to other

For the all-important first step of identifying the presence éfingularities.
a stress singularity in elasticity, two types of analysis are For the case of cracks within a single material, the prac-
available: analytical asymptotics and numerical methods. tice of LEFM is quite accomplished at this time. In two
With respect toasymptotics three principal approachesdimensions in particular, finite element analysis is most ca-
exist for 2D analysis: via the Airy stress function, viPable when it comes to calculating stress intensity factors.
Kolossoff-Muskhelishvili complex potentials, and via thelhe means favored here for resolving the crack-tip stresses is
Mellin transform. These approaches are well developed \4@ quarter-point elementéSection 4.4, though certainly
this time. Properly implemented, all three identify the sanféther possibilities are available. The most reliable means of
stress singularities: Hence, the choice of which to use §xtractingK from such an analysis would appear to be via
largely a matter of personal preference. In two dimensiorath-independent integra{Section 4.5 Companion testing
the various elastic stress singularities actually identified & also well controlled and reproducib{8ection 3.4. How-

date with these approaches may be summarized as follo®¥er, While predictions made by LEFM are typically
For any stress componemt, as the singular point is ap-trendwise correct, there are occasions when there is consid-

proached, elasticity can have: erable room for improvement in their accura8ection 3.4,

3 ., e and extension to other singularities may well face yet greater
o=0(r"7cog7Inr))+O(r7sin(7Inr)) difficulties in making accurate predictioiSections 3.2 and
o=0(r ?Inr)+0(r ) 3.3). All told, there would appear to be a good case for at-
o= O(I‘ N y) 32The last stress of Eqé5.1) is not strictly singular, being bounded as-0. However,

2 itis undefined as— 0, and consequently shares some of the difficulties associated with
o=ord(In“r)+ord(Inr) (5.1) stress singularities.
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tempting toimprove the modelingo that stress singularities [7]
are replaced with physically sensible stresses.
For conforming contact problem# elasticity, the re-

moval of singularities is now well understood. This removal[s]
is accomplished by the policing of contact inequalities when
there are sufficient degrees of freedom in a problem to effect
such policing(Section 2.4. Commercial FEA codes are cur- [g]
rently available to implement such analysis. Resulting finite
stress fields continue to prove to be useful in engineeri
practice.

For other singular configurationsthe removal of singu- [11]
larities is nowhere near as mature as it is for conforming
contact. However, the realource of such singularitiess [12]
emerging. These singularities do not really stem from the
discontinuities present, nor from the field equations of elat®
ticity (Section 2.1 Rather, they stem from a probably un-
witting introduction of effectively infinite stiffnesses in co-[14l
hesive laws. With this appreciation, it would appear to be
possible to remove most if not all of the discontinuity singufis]
larities of elasticity by ensuring finite stiffness€Section
2.3). Such removals can be pursued with or without remoy,
ing the original discontinuity, indicating the discontinuity’s
secondary role in the generation of stress singularities. They/]
can also be undertaken without introducing plasticity or large
strain effects, though such effects may merit inclusion d$8]
loading progresses. Implementation of this type of approac{ﬂ9
however, faces some serious challenges. There are modeling
issues, analytical tractability concerns, and interpretatid@ol
questions. Nonetheless, research in this area holds the prom-
ise of significant improvements in the physical appropriatgs1]
ness of stress fields in classical elasticity in particular, and in
solid mechanics in general. [22

[23]
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