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Stress singularities in classical elasticity–I:
Removal, interpretation, and analysis

GB Sinclair
Department of Mechanical Engineering, Louisiana State University, Baton Rouge,
LA 70803-6413

This review article has two parts, published in separate issues of this journal, which consider
the stress singularities that occur in linear elastostatics. In the present Part I, after a brief re-
view of the singularities that attend concentrated loads, attention is focused on the singulari-
ties that occur away from such loading, and primarily on 2D configurations. A number of ex-
amples of these singularities are given in the Introduction. For all of these examples, it is
absolutely essential that the presence of singularities at least be recognized if the stress fields
are to be used in attempts to ensure structural integrity. Given an appreciation of a stress sin-
gularity’s occurrence, there are two options open to the stress analyst if the stress analysis is
to actually be used. First, to try and improve the modeling so that the singularity is removed
and physically sensible stresses result. Second, to try and interpret singularities that persist in
a physically meaningful way. Section 2 of the paper reviews avenues available for the re-
moval of stress singularities. At this time, further research is needed to effect the removal of
all singularities. Section 3 of the paper reviews possible interpretations of singularities. At this
time, interpretations using the singularity coefficient, or stress intensity factor, would appear to
be the best available. To implement an approach using stress intensity factors in a general
context, two types of companion analysis are usually required: analytical asymptotics to char-
acterize local singular fields; and numerical analysis to capture participation in global configu-
rations. Section 4 of the paper reviews both types of analysis. At this time, methods for both
are fairly well developed. Studies in the literature which actually effect asymptotic analyses of
specific singular configurations will be considered in Part II of this review article. The present
Part I has 182 references.@DOI: 10.1115/1.1762503#

1 INTRODUCTION

1.1 Objective and scope

Stress singularities are not of the real world. Nonetheless,
they can be a real fact of a stress analysis. Then it is essential
to take them into account if the analysis is to be of any real
use. The primary objective of this review is to assist in this
regard. That is, in the first instance, to aid in the all-important
task of recognition of a singularity’s presence, then, in the
second instance, to aid in removal or interpretation.

Throughout this review we takestress singularitiesas in-
volving stresses which, in themselves, are unbounded. Spe-
cifically, we are concerned with when such singularities can
occur in the linear elastic regime. This is a key regime since
elastic response physically precedes plastic flow, so that in-
troducing plasticity does not remove the singular character in
any true sense.1 To keep the scope of the article within rea-
sonable limits, we further restrict attention to materials
which are homogeneous, or piecewise so, and isotropic. We

also focus on loading which is quasi-static. For such class
elasticity fields, two classes of singular configurations m
be distinguished: those wherein singularities occur un
concentrated loads, and those wherein they occur away f
any concentrated loading. For either, it is important to r
ognize the presence of stress singularities and to appre
their nature. In what follows we give examples of both, th
turn our attention to the latter because it typically prese
greater difficulties to the stress analyst.

1.2 Examples of stress singularities under concentrated
loads

Concentrated loading configurations induce singularities
rectly by applying finite stress resultants~eg, forces, mo-
ments! over regions with vanishingly small areas~eg, points,
lines!. As such they may be termedsingular loads: Table 1
exhibits the singular character of the stresses for a basic
of such loads.
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1We expand on this point in Section 2.1.
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Table 1. Basic singular loads of classical elasticity

Load type
3D stress
state at load„r\0…

2D stress
state at load„r\0…

Isolated force ord(r 22) ord(r 21)
Doublet state ord(r 23) ord(r 22)
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Fig. 1 Some limiting configurations for doublet states:a) concen-
trated moment,b) force doublet without a moment,c) center of
compression
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In Table 1,r is the distance from the point of applicatio
of a singular load, and we have employed the ord notat
For a functionf (r ), here this has

f ~r !5ord~r 2g! as r→0 (1.1)

if

r g f ~r !5cÞ0 as r→0 (1.2)

whereg and c are constants. The traditional large orderO
notation, in contrast, admits the possibility thatc50. Pro-
vided nonzero loads are being applied,c cannot be every-
where zero for the stresses in Table 1.

Examples of solutions for isolated force problems in th
dimensions are: the point load in the infinite elastic medi
by Kelvin ~Thomson@1#!, the normal point load on the su
face of an elastic half-space of Boussinesq@2#, the tangential
point load on a half-space surface of Cerutti@3#, and point
loads within a half-space in Mindlin@4#. A convenient com-
pendium of these closed-form solutions may be found
Poulos and Davis@5#, Section 2.1. Inspection of these sol
tions demonstrates compliance with the order of singula
for point loads given in Table 1. Analogous solutions ex
for isolated force problems in two dimensions, namely:
line load in an infinite elastic medium in Michell@6#, the
normal line load on the surface of an elastic half-space
Flamant@7#, the tangential line load on a half-space surfa
in Boussinesq@8#, and line loads within a half-space i
Melan @9#.2 These may be found ibid, Section 2.2, and a
demonstrate compliance with their singular order given
Table 1.

Examples of doublet states are indicated in Fig. 1. T
first of these~Fig. 1a! illustrates a means of obtaining
concentrated momentM . This moment is produced by tak
ing the limit asd→0 whered is the horizontal separation o
two vertical forces of magnitudeF5M /d. The second ar-
rangement~Fig. 1b! is a dual of the first and realizes n
resultant force or moment in the limit asd→0, yet does have
a nontrivial stress field ifF is ord(d21): As a consequence
it requires a generalization of the usual notion of a load
terming it a ‘‘singular load.’’ The third arrangement~Fig. 1c!
is a center of compression produced by superposing the
ond in an angular array: It, too, represents a load in a ge
alized sense. A precise definition of doublet states in gen
is given in Sternberg and Eubanks@11#. Some closed-form
solutions for doublet states in three dimensions may be fo
in: Love @12# Article 132, Sternberg and Eubanks@11#, Tur-
teltaub and Sternberg@13#, Chowdhury@14#, and Chen@15#.
Closed-form solutions for doublet states in two dimensio
are available in Love@12# Article 152, and Timoshenko an
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Goodier@16# Articles 36 and 42. The stresses in all of the
solutions comply with their respective orders of singular
given in Table 1.

The nature of the singularities displayed in Table 1 is, t
degree, that expected. For a point force, integration of
tractions acting on the surface of a small sphere of radiur
centered on the point of application produces a produc
stresses withr 2: Hence the stresses can be expected to
have like r 22 if a finite force is to result in the limit asr
→0. Similarly for a line load, one anticipates stresses wh
behave liker 21. And the doublet states, being derivable
differentiation of corresponding isolated loads, then beh
as r 23 and r 22 in three dimensions and two dimension
respectively. However, some care needs to be exercise
these expectations are to be realized in the limit by a
quence of finite stress fields acting over regions of fin
extent—a limiting process for producing singular loads th
is physically appealing. Sternberg and Eubanks@11# gives a
clear account of the sort of restrictions required on the fin
stress distributions used in the limiting process: These
strictions have since been refined in Turteltaub and Sternb
@13#. In essence, Sternberg and Eubanks establish that
insufficient to simply have the distributed fields be statica
equivalent to the end stress resultant sought~as Kelvin origi-
nally proposed for his problem!. If one merely makes this
requirement, then it is possible, for example, to add a dou
state of the kind in Fig. 1b to a point load problem, thereb
changing the dominant singularity of the latter without alte
ing the force exerted. One means of avoiding this additio
field for the point force example is to require all the distri
uted stresses in the underlying limiting sequence be unidi
tional; alternative restrictions for the point load, as well
effective requirements for other singular loads, are given
Sternberg and Eubanks@11# and Turteltaub and Sternber
@13#. Provided proper attention is paid to the generating
2An error in one of the formulas given in Melan@9# is corrected in Kurshin@10#.
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quence of the distributed loads acting on successiv
smaller regions, all of the singular loads included in Tabl
have unique stress fields with singularities as indica
therein.

In practice, concentrated loads usually serve as Gre
functions in stress analysis. That is, they are superpose
achieve a desired regular distribution of applied loads. Of
this superposition is undertaken via numerical analysis
demonstration of their use in this way occurs in integ
equation approaches, such as the boundary integral equ
method which currently enjoys fairly wide application
elastic stress analysis. In this role, it is of value to underst
the singular nature of the concentrated loads involved in
der to design efficient quadrature schemes for their nume
integration. However, these integrations typically result
finite stresses. Then, one is not faced with the challeng
drawing physical inferences, with respect to structural int
rity, from nonphysical singular fields. On other occasio
though, singular loads can be used to model highly locali
loading, such as under a knife edge in the three-point-b
specimen of fracture mechanics~eg, at pointP1 in Fig. 2a!.
In this instance, if a line load is introduced, it is merely
one of a set of three which effect an applied moment for
crack. As such, it is not the feature of greatest interest,
cally, with respect to potential failure—the crack tip is (P2 in
Fig. 2a!.3 Again, one is not faced with interpreting loca
fields at singular loads. On the other hand, one must atte
this task for the crack, with its classical, inverse-square-ro
stress singularity. Indeed, in general this is the case for
second class of singular configurations recognized here.
cordingly we focus on stress singularities which occur aw
from any concentrated loading throughout the remainde
this review.

1.3 Examples of other stress singularities

Some illustrative examples of this class of singularity a
depicted schematically in Fig. 2. The corresponding order
stress singularity present are set out in Table 2.

The first example~Fig. 2a! is the aforementioned cracke
elastic plate under three-point bending, with its attenda
inverse-square-root, stress singularity reflecting the stres
tensification at the crack tip~ie, at P2). For the case of a
crack in a large elastic plate under transverse tension, su
singularity can be extracted from the corresponding solu
for the elliptical hole on passing to the limit as the ho
becomes a mathematically sharp slit. The fields required
take this limit were first provided in Kolossoff@17# ~see also
Kolossoff @18#!, and subsequently derived in Inglis@19#.
That the same singularity results for crack tips in gene
and for the crack tip in the three-point-bend specimen of F
2a in particular, can be discerned from Williams’ semin
paper@20#. In this paper, the asymptotic character of elas
stresses in angular plates or wedges under extension i
vealed: Letting the angle of the ‘‘free-free’’ wedge go to 2p
in Williams @20# recovers singular stresses as in Table 2.
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As a modification to the first example, we consider t
plate now to be comprised of two distinct elastic materi
instead of a single one. The two are perfectly bonded
gether on an interface extending straight ahead of the c
~indicated by the dashed line in Fig. 2a!. Adding the further
discontinuity of an abrupt change in material properties r
ders the crack-tip stress singularity more nonphysical, w
the inverse square root having multipliers, cos(h ln r) and
sin(h ln r), which oscillate an infinite number of times in th
limit r→0 whenhÞ0. Hereinh is a material constant given
by

h5
1

2p
ln

m11k1m2

m21k2m1
(1.3)

where m is the shear modulus,k5324n or (32n)/(1
1n) for plane strain or plane stress,n being Poisson’s ratio,
and the subscripts distinguish the different materials on e
side of the interface crack. Observe that if the materials
taken to be one and the same,h50 and there is no oscilla
tory multiplier, as in our original example. Otherwise, typ
cally interface cracks have oscillatory, inverse-square-ro
stress singularities, as first shown in Williams@21#.

A related pair of examples concerns a tire, under lig
load, where it meets a relatively stiff pavement at the sh
edge of a pothole~a section through such an arrangemen
sketched in Fig. 2b, whereinP3 is the point of interest!. If
the pavement is icy, and thereby lubricated, the situation i
if the tire were an elastic half-space being indented by a fl
frictionless, rigid strip. The solution to this problem was fir
given in Sadowsky@22#, and exemplifies the inverse-squar
root stress singularity listed in Table 2. That the singu
character here is the same as for the crack in a homogen
material can be argued as follows. First we note that, fo

odels

Table 2. Some elastic stress singularities away from singular loads

Singular point,
Fig. 2 „rÄ0…

Local configuration
description

Singular stresses
at point „r\0…

P2 Crack tip in three-point-
bend specimen

ord(r 21/2)

P2 Interface crack tip
in bend specimen

ord(r 21/2 cos(h ln r)) &
ord(r 21/2 sin(h ln r)),
see Eq.~1.3! for h

P3 Tire at pothole edge
under icy conditions

ord(r 21/2)

P3 Adhering nylon tire at
pothole edge

ord(r 21/2 cos(h ln r)) &
ord(r 21/2 sin(h ln r)),
see Eq.~1.4! for h

P4 Edge of piston ring
pressed into cylinder wall

ord(r 20.23)

P5 Reentrant corner in
stress-free keyway

ord(Tr21/3)
ord(Fr 20.46) & ord(Fr 20.09)

P6 Edge of adhering rubber
tire on pavement

ord(r 20.41)

P7 Circumference of an
epoxy-steel interface

ord(r 21/3)

P8 Edge of a rough heavy
block on an elastic slab

ord(ln r)

P9 Edge of a smooth steel
chisel on a wooden block

ord(ln r)

P10 Submodel node with
displacement shape
functions as boundary
conditions

ord(ln r)
3If instead the stresses under the knife edge were of greatest concern, better m
than a line load are available, as we demonstrate subsequently.
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Fig. 2 Some singular configurations:a) three-point-bend test piece of fracture mechanics,b) section through a tire on a relatively rigi
pavement,c) section through a piston with a ring pressed into a cylinder wall,d) section of a shaft with a stress-free keyway under tors
and lateral loading,e) adhesive butt joint under tension,f ! rough heavy block sticking to an elastic base,g) steel chisel just starting to
indent a wooden slab,h) displacement shape functions as submodel boundary conditions
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2D elastic half-space, the constant displacement due to
rigid strip can be recovered by a rigid body translatio
Hence, we need only consider homogeneous conditions
der the strip, together with stress-free conditions outside
strip. But these conditions under the strip are the same
symmetry conditions. Thus the half-space can be reflecte
itself to produce a full space with a pair of stress-free cra
outside of where the strip punch acts.

For the second of our examples concerning the arran
ment in Fig. 2b at P3 , we consider the pavement to be d
and the tire to stick to it perfectly. Now the in-plane situati
for the section of Fig. 2b is as if the tire were being indente
by a flat, adhering, rigid strip. The solution to this proble
was first furnished in Abramov@23#, and contains the
inverse-square-root stress singularity, with its oscillato
multipliers, listed in Table 2. This is the same singularity
for the interface crack, except that nowh is given by Eq.
~1.3! with m2→` therein. That is,

h5
1

2p
ln k (1.4)

Recall thatk5324n for the plane strain state applicab
here: So as to avoidh50, Table 2 specifies a nylon tire (n
50.4) rather than rubber (n50.5) for this case of adhesiv
contact. Asymptotically, the configuration can be treated
ing the ‘‘clamped-free’’ conditions for a wedge of anglep in
Williams @20#, if one sets ‘‘s’’ 5n in Eq. ~17! therein so as to
correspond to a state of plane strain. The same singula
results.

A further contact example is that of a lubricated pist
ring pressed into a cylinder wall as indicated in Fig. 2c. This
configuration is axisymmetric rather than being as previ
examples which entail states of plane strain. However,
first argued in Zak@24#, a plane strain analysis still applie
Then, if the ring is taken to be relatively rigid compared
the cylinder, the same inverse-square-root singularity res
as for an indentation with a flat, frictionless, rigid strip~Fig.
2c at P4). Alternatively, if the more realistic assumption
made that the ring is comprised of the same material as
cylinder, the weaker singularity of Table 2 results. This s
gularity can be identified by solving the pertinent eigenva
equation in Dempsey and Sinclair@25#. It is weaker because
now the deformation of the ring is being included.

For the example of a stress-free keyway in a shaft un
torqueT and transverse loadF ~Fig. 2d!, multiple singulari-
ties are present~Table 2!. For the torque, the singularity ac
tive at the 90° reentrant corner~ie, atP5) is weaker than if a
crack is subjected to torsion, having an exponent of 1/3 co
pared to 1/2. This singularity was first identified in Thoms
and Tait@26#, Section 710. For the transverse load, two s
gularities typically participate. The stronger one is associa
with loading which is symmetric about the bisector of t
angle at the reentrant corner, the weaker with antisymme
Both are weaker than the singularity at a crack, a reent
corner of zero angle in effect. The two singularities for th
right-angled reentrant corner are included in Brahtz@27#. Al-
ternatively, they may be obtained using the ‘‘free-free’’ co
ditions in Williams@20#, on taking a wedge angle of 3p/2. In
the
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general, as the angle at a reentrant corner increases, s
larity strength reduces. Eventually, when a stress-free co
opens all the way up to a half-space, singular stresses
removed.

The disappearance of stress singularities once corners
no longer reentrant need not be the case when the boun
conditions are mixed, as is demonstrated in our next
ample. This concerns the tire again~Fig. 2b!, but now where
it meets the pavement at its outside edge~ie, at P6). If the
tire adheres perfectly to the relatively rigid pavement, loca
this configuration becomes a right-angled corner in pla
strain with one face being free of stress, the other comple
fixed. The singularity in this instance is characterized
Knein @28#. Alternatively, it may be obtained using th
‘‘clamped-free’’ conditions in Williams@20# for a wedge
angle of onlyp/2, provided these are adapted to a state
plane strain. For rubber (n50.5), the stress singularity o
Table 2 results~there is a minor round-off error in the singu
larity exponent in Knein@28#!. While this is weaker than tha
of a crack, it is nonetheless quite comparable in strength

A similar situation occurs for the butt joint under tensio
of Fig. 2e. Herein the points of interest are where the int
face between the epoxy adhesive and steel adherend m
the outside free surface~eg, P7). As for the piston ring, this
configuration is axisymmetric but nonetheless plane str
analysis still applies. Again then, since steel is relativ
rigid compared to epoxy, a ‘‘clamped-free’’ right-angled co
ner in plane strain is appropriate and can be treated via W
liams @20#. Taking 3/8 as a reasonable estimate of Poisso
ratio for epoxy, this gives the singularity of Table 2. Th
reduction in strength here from that of the rubber corne
due to the lower value ofn. Indeed, there is no singularity fo
such corners whenn50.

Our last three examples give rise to the weakest type
stress singularity in elasticity, the logarithmic singulari
The first example concerns a heavy rough block, unde
lateral force, sticking to a horizontal elastic surface~Fig. 2f!.
If one assumes that the normal stresses produce a disc
nuity in the surface shear~ie, at P8 , as indicated in the
close-up!, then a log singularity in the stresses occurs, wit
coefficient that is proportional to the magnitude of the sh
stress discontinuity. This result is given in Kolossoff@18#.
Alternatively, it can be constructed using auxiliary fields
those in Williams@20#. These fields may be found in Demp
sey and Sinclair@29#. While the normal stress discontinuit
produces no stress singularity, any shear stress discontin
on an elastic half-plane does. To see an indication of w
this is so, consider the shear stress components on the
little square elements outlined by broken lines in the close
of Fig. 2f. The left one is in force and moment equilibrium
it has no shears on its boundaries. The right one, cons
shears. Where they meet, there is an incompatibility in sh
stress which cannot be accommodated by any regular e
ticity fields known to date.

The second example concerns a piece of wood, just s
ing to be indented but not yet cut, by a sharp chisel made
relatively rigid steel~Fig. 2g!. Assuming the contact to be
frictionless and ignoring any anisotropy in the wood, t
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log-singularity stress field induced at the cutting edge~ie, at
P9) may be found in Sneddon@30#, Section 48.4. Again,
alternatively it can be constructed using the auxiliary fie
in Dempsey and Sinclair@29#. This log singularity features a
coefficient which depends on the chisel tip angle and is p
portional to the elastic moduli of the wood. It also has
displacement field which is more physically applicable
initial knife-edge loading than that of a line load, being fr
of unbounded vertical displacement and overlapping h
zontal ones.

The third example concerns the use of displacement sh
functions as boundary conditions in submodeling in fin
element analysis~as suggested in ABAQUS@31#, and AN-
SYS @32#!. Along a smooth submodel boundary, spurious
singularities can be introduced. An example involving fo
node elements is shown in Fig. 2h. Therein a log singularity
occurs at the node atP10 whenever there is a discontinuity i
the derivatives of either of the boundary displacementsu
andv on y50. That is, whenever the constants are such
c1

2Þc1
1 or c2

2Þc2
1 . Fields are given in Sinclair and Epp

@33#.

1.4 What to do about stress singularities

The foregoing serves to demonstrate some of the variet
singular configurations and stress singularities possible
classical elasticity. The natural question which then arise
what is to be done about these and like configurations
attempting to ensure structural reliability? In the first i
stance, it is vital that the stress analyst at least recog
when a stress singularity is present.4

That there is a singularity present is not always imme
ately obvious. This is especially so in the stress analysi
actual engineering components, since frequently the c
plexity of such configurations necessitates numerical tr
ment, often via finite element analysis~FEA!. Under these
circumstances, one does not have available analytical s
tions whereby singular character is detectable simply by
servation. Nevertheless, it remains essential that the pres
of any singular stress field be appreciated.

Consider the alternative. A scenario such as follows
then quite possible. On Monday, you complete a first FEA
a component subjected to cyclic loading. The maxim
stresses found are a factor of two less than the endur
stress of the component’s material. You conclude that
component has indefinite life, or at least long life. O
Wednesday, you check your FEA with a refined grid. T
peak stresses are now comparable to the endurance. Yo
in somewhat of a quandary as to how much life the p
really has. Hence, on Friday you complete a further FEA
a still more refined mesh. Now you get stresses that a
factor of two greater than the endurance level. The com
nent’s life now is, apparently, distinctly limited. Life for yo
ear
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is somewhat disconcerting: Such a workweek does not m
for a great weekend. More importantly, such a structural
praisal has nothing to do with the component’s actual str
tural reliability: In the presence of a singularity, any suf
ciently refined numerical analysis predicts failure when pe
stresses are compared against some finite stress criterio
respective of what is physically happening. Under such
cumstances, the participation of the singular stresses m
first be recognized if any real use is to be made of the an
sis. The main aim of this review is to aid in achieving su
recognition.

That said, we next turn our attention to the important a
challenging task of interpreting singular stress fields onc
is apparent that they are active. In taking up this challen
we begin by considering the simplifications made in class
elasticity since we expect singularities to be a product of
modeling in the theory, infinite stresses not being poss
physically. Three such simplifying assumptions or lineariz
tions can be identified in the classical theory of elastic
The first linearization has that the relationship betwe
stresses and strains is linear; that is, the stresses do no
ceed the limits of elastic material response. The second
earization has that the strains depend linearly on the
placement gradients; that is, the displacement gradients
small. The third linearization has that all loads act on t
undeformed shape throughout the entire loading process;
is, the deflections are small. The singular stress fields of c
sical elasticity are in violation of all three of these assum
tions. Yet they do comply with all of the field equations
elasticity, as may be established by simply substituting th
into these equations. This seemingly paradoxical situa
results from the fact that, once an assumption is made in
theory of elasticity and equations so simplified, complian
with the assumption becomes unpoliced by the theory its
This allows singular stress fields to comply with the fie
equations of classical elasticity, but remain in defiance of
underlying and unpoliced assumptions of elasticity. Suc
situation requires some care if one is to be successfu
interpreting these fundamentally wayward fields in a phy
cally meaningful fashion.

To demonstrate the difficulty of interpreting results wh
they lie outside of admissible responses in a theory, cons
the following beam example taken from Frisch-Fay@34#. On
page one of his monograph, Frisch-Fay considers a horiz
tal cantilever beam of length 2.54 m~100 inches!, with a
bending stiffness of 2.87 Nm2 (1000 lbf in2), subjected to a
vertical concentrated end load of 4.45 N~1 lbf!. Treating this
beam within the context of classical beam theory for sm
deflections, Frisch-Fay obtains a prediction of a vertical
deflection of 8.47 m~333 inches!, or more than three times
the beam’s original length. This result suggests strains of
order of 300% and the possibility of gross yielding and ev
ductile rupture. Subsequently, on page 39 of Frisch-Fay@34#,
the same beam is analyzed within the context of nonlin
beam theory for large deflections. This analysis results i
vertical deflection of 2.06 m~81 inches!, together with a
horizontal deflection of 1.42 m~56 inches!, and stress and
strain fields that can now comply with the underlying a

icro-
fully
4We have not included, in the examples of Table 2, the yet stronger, ord(r 21), singu-
larity occurring at dislocations of the Volterra type~see, eg, Love@12#, Appendix to
Chapters VIII, IX, or Timoshenko and Goodier@16#, Articles 34, 117!. These fields are
used as Green’s functions, and by some theoreticians in an attempt to model m
structure. We omit discussion of them primarily because we expect users to be
cognizant of the singular character present.
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sumptions of the theory. The beam’s length is essenti
unchanged, in contrast to the earlier and potentially qu
misleading prediction. It follows that, in this instance, all o
can reasonably directly conclude from the prediction of cl
sical, small-deflection, beam theory is that the deflection
large, too large to be quantitatively predicted by the theo
In essence, the same situation holds with respect to the
gular stress fields of classical elasticity. Typically, they a
correct qualitatively in implying large stresses, yet quant
tively they cannot be relied upon for the magnitude of the
stresses. Other less direct interpretations must be mad
order to quantify the implications of stress singularities.

The preceding example also illustrates a possible stra
for dealing with stress singularities: namely, improving t
modeling in the underlying theory so that physically sensi
outcomes are predicted. This is what nonlinear beam the
did in the example, albeit at the expense of turning a lin
theory into a less tractable nonlinear one. Arguably, eve
the expense of requiring greater analytical effort, such
provements in the physical modeling represent the ultim
of ‘‘interpretations’’ of singular stress fields. Accordingly, w
consider various means that might effect such improvem
next, in Section 2. Currently, not all configurations are am
nable to complete amelioration of their singular stress fie
via the various means identified. Hence, in Section 3
review interpretations that can be made when singular
havior persists. Then we return to our primary intent of he
ing a stress analyst appreciate when a stress singularity
occur, and what its singular character can be. We begin
activity in Section 4 with a description of some method
both analytical and numerical, for determining the nature a
participation of stress singularities. We then close Part I
this review with some concluding remarks. Part II will fo
low with a review of contributions in the literature that ha
actually carried out characterizations of possible local sin
lar stresses for a variety of elastic configurations. Through
both parts, there are portions of the text that are tutoria
nature. Because a significant amount of today’s stress an
sis is carried out in industry and, in the main, by engine
with bachelor’s degrees, a serious effort has been mad
write these tutorial portions so that they can be underst
by such stress analysts.

2 RIDDING CONFIGURATIONS
OF NONPHYSICAL STRESS SINGULARITIES

2.1 Possible avenues for removing singularities

In some instances, removing singularities is straightforwa
For example, the logarithmic singularities induced by the
of displacement shape functions as boundary conditions
submodels in finite element analysis~eg, P10 of Table 2 and
Fig. 2h!. These can be removed simply by fitting nodal d
placements in the global FEA preceding the submodel w
curves that are once continuously differentiable, then us
intervening values in submodel boundary conditions~eg, by
fitting a cubic spline as in Kondo and Sinclair@35#!. In es-
sence, all that is required here is an appreciation of the
troduction of singularities by a poor choice of boundary co
lly
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ditions which have extraneous discontinuities. Th
removing such discontinuities removes the singularities.

In other instances, smoothing discontinuities might a
appear to remove singularities. For example, rounding the
of a crack~as atP2 of Table 2 and Fig. 2a!, or rounding the
corner in a keyway~as atP5 of Table 2 and Fig. 2d!, does
produce finite stresses. This tactic for the latter example
suggested in Thomson and Tait@26# circa 1867, so such an
approach is definitely not new. However, in instances such
these two wherein the stress singularities reflect real st
concentrations, such smoothing is questionable.

How so? For the example of the crack, certainly there
no singular stresses with any root radius that is greater t
zero. However, we know that for a root radius that is zero
get the physical absurdity of infinite stresses. This raises
question of just how physically relevant are the finite b
extremely large stresses that can result from extremely s
root radii. Moreover, crack tips can have extremely sm
root radii, so the question is not moot. And similar conce
apply to rounding of the keyway corner.

The real removal of stress singularities requires that
can be confident that the unbounded stresses are bein
placed by physically sensible ones. For the crack and
configurations, this really means we want finite sensi
stresses when root radii actually go to zero. Only then can
be reasonably confident of the physical relevance of st
fields for root radii near but not zero.

At first thought, opportunities for achieving the remov
of singularities when root radii are zero would appear to st
from relaxing the constraints implicit in the linearizations
classical elasticity listed earlier. Perhaps the most natura
consider in this regard is relaxing the assumption that
stresses remain below their elastic limits and, thereby, en
taining the possibility of plastic flow. Such a relaxation
quite often implied in the literature to be the appropria
recourse to take when singularities occur in elasticity.
deed, if one insists upon perfectly plastic material respo
after elastic, unbounded stresses can be removed. Non
less, introducing plasticity does not really effect a resolut
of the difficulties with elastic stress singularities, as we e
plain next.

To begin, introducing plasticity begs the question of ho
to remove singularities for configurations involving materia
that are not ductile. Leaving this omission aside, even
ductile materials it is not really appropriate. To see this, c
sider what happens physically as loading progresses. At
outset, loads are small. In fact, for any actual configurat
comprised of a material withsY.0, sY being the yield
stress, there exists a sufficiently light loading so that, phy
cally, no yielding whatsoever is produced. Yet, if the co
figuration of interest has an elastic stress singularity,
theory predicts yielding for any nonzero load, no matter h
small. Given the physical inappropriateness of the initial
sponse of plastic fields derived from singular elastic ones
is not reasonable to assume that these fields correct th
selves as plastic flow increases. Accordingly, one cannot
on these fields to accurately capture the physics of the s
ation.
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Fig. 3 Tensile crack in a hardening material
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plasticity irrespective of load level, provided it is not zer
Thus, if this value or a lesser stress is chosen as a fai
criterion, failure is always predicted: If, on the other hand
higher stress value is taken, failure is never predicted. S
stress-based predictions have no reliable correlation to w
is physically happening. Furthermore, one cannot rely upo
strain criterion for this special type of material respon
since the strains remain singular—see the second of E
~2.2!, from Hutchinson@37# ~the same result may be found i
Cherepanov@36# and Rice and Rosengren@38#!.

Other geometries share the persistence of singular be
ior when treated via deformation theory, though not all co
ply with the second of~2.2!: see Chao and Yang@40#, Rudge
and Tiernan@41#, Zhang and Joseph@42#, and references
therein. It follows that introducing yielding and plastic flo
when a singularity is already present in the elastic respo
does not remove the singularity in any real sense.

Alternatively, one could consider relaxing the assumpt
of small displacement gradients and, thereby, entertaining
possibility of large strains. Again, though, initially it is a
ways possible to have actual load levels which are li
enough so that only small strains are induced physica
rather than large. This raises questions as to how importa
is to include a large strain representation at such load lev
Observe, though, that in contrast to plasticity, the nonlin
contributions attending large strain representationsare
presentat low load levels, even if they are relatively sma
Consequently, absent analysis, it is not clear how much
laxing the small displacement gradient assumption m
remove/alleviate singular stresses.

Turning to analysis then, the general finding is that la
strain treatments do typically improve the physical approp
ateness of singular fields, and even on occasion rem
them, but nonetheless result in the persistence of a numb
singularities. For the crack, results of this nature were fi
indicated in Wong and Shield@43#, then established for more
general circumstances in the two successive papers, Kno
and Sternberg@44,45#. Geubelle and Knauss@46# provides a
recent large strain treatment of cracks demonstrating pe
tence of singular behavior, together with a review of t
area.5 There and elsewhere, ther 21 behavior asr→0 of the
crack-tip stress-strain product is found to continue to
present~cf, the second of Eqs.~2.2!!. On the other hand, a
large strain treatment of the interface crack can remove
nonphysical oscillatory multiplier of the stress singular
noted in the Introduction forP2 of Table 2 and Fig. 2a ~see
Geubelle and Knauss@47# and references therein!. It can also
remove the oscillatory nature of the singularity for the adh
sive flat punch noted forP3 of Table 2 and Fig. 2b ~Knowles
and Sternberg@48#!. Furthermore, it does remove the enti
singularity for the butt joint noted forP7 of Table 2 and Fig.
2e ~Ru @49#!. However, it does not remove singularities f
other bimaterial wedges~Ru @49#!, nor for reentrant corners
~Duva @50#!. In sum, while introducing large strain analys
is to
not
There is a further impediment to the use of such estima
of elasto-plastic response in structural integrity consid
ations. If the material being considered hardens at all a
yielding, the stresses can be expected to remain sing
though with the strength of their singular behavior typica
being abated. That this is so for the case of a crack is sh
in Cherepanov@36#, Hutchinson@37#, and Rice and Rosen
gren @38#, within the context of total deformation theory o
plasticity. By way of specific example, we consider a tens
crack tip ~Fig. 3! in a material which hardens in accordan
with the model put forward in Ramberg and Osgood@39#. A
law for uniaxial tensile stresss t versus tensile strain« t for
such a model is

« t

«Y
5

s t

sY
1

1

500S s t

sY
D n«

(2.1)

whereinsY continues as the yield stress and«Y5sY /E is
the corresponding strain, withE being Young’s modulus and
n« the strain hardening exponent. Then, from Hutchins
@37# using the coordinates of Fig. 3, the normal stress
strain ahead of the crack within deformation theory beh
in accordance with

sy5O~x21/(n«11)!, sy«y5O~x21!, as x→01

(2.2)

on y50. For n«51, the classical inverse-square-root sing
larity of elasticity is recovered. For 1,n«,`, the stress
singularity is weaker but nonetheless persists. Hence
futile to compare such stresses directly with finite mate
values such as the ultimate stress or the endurance s
~recall the previous discussion in the Introduction!.

For the special and physically atypical case of perf
plasticity post yield (n«→`), the crack-tip stresses are co
strained to be finite but still cannot be compared in a me
ingful way with material values. This is because the stres
always locally attain the limiting value set by the perfe
an-
ses
ct

5Some of these references term themselves ‘‘finite strain’’ treatments. This term
underscore the contrast with the infinitesimal strains of classical elasticity: It does
imply bounded strains at the crack tip.
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Fig. 4 Genesic Griffith crack configuration
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penetration or overlapping of material outside of the origin
contact region. If, instead, the two are allowed to cont
further without interpenetration, the power singularity is r
duced to a log singularity which is similar to that for th
chisel indentation configuration (P9 of Table 2 and Fig. 2g!.
While this is a weaker singularity, nevertheless it is singu
Thus, this last relaxation also fails to really remove singu
character once it exists in a classical elasticity solution.

All told, none of the foregoing relaxations fully remov
stress singularities when they exist in classical elasticity. N
to say that elasto-plastic/large strain/large deflection anal
may not be appropriate on occasion once the removal is
fected, but that by themselves such analyses do not effec
removal. Needed is a different approach.

What other options are there for improving the modeli
so that stress singularities are replaced with physically s
sible stresses? The answer lies in the boundary condit
enforced, both as direct requirements and as auxiliary c
straints. We consider some problems where singular stre
are alleviated via this approach next.

2.2 Canceling crack-tip singularities: Barenblatt’s ap-
proach

We begin our consideration of the effects of more physica
appropriate boundary conditions withcrackedconfigurations
because of their central role in solid mechanics in gene
and fracture mechanics in particular. For such configuratio
it is possible to negate singularities produced by loading
mote from the crack with those due to tractions acting on
crack flanks. Barenblatt credits Khristianovitch as being fi
to notice this in his paper with Zheltov in 1955. In Zhelto
and Khristianovitch@54#, a large rock stratum comprised o
an oil bearing shale is considered with a view to determin
when a pressurized flaw within the stratum might fractu
The stratum is under all-round pressurep0 while the faces of
the flaw near its tips are subjected to a relatively high int
nal pressure ofpi ~Fig. 5!. The configuration is treated as 2
and elastic. Then, if the extent of the regions over whichpi

acts,Da, is taken to be an appropriate fraction of the to

Fig. 5 Pressurized crack configuration
improves the physical appropriateness of singular fields
degree, this relaxation fails to fully remove them.

The remaining option for relaxation within the simplifica
tions of classical elasticity is the small deflection assumpti
That is, removing the assumption that the loads act in th
entirety on the undeformed state. Relaxation of this assu
tion can be performed by applying loads incrementally
deformation proceeds: In some sense, one may interpret
linear beam theory as an implementation of such an
proach. Griffith was first to do this for a crack in an infini
plate under all-round tensions0 ~Griffith @51#!. He formed
his crack of length 2a as the limit as the semiminor axis,b,
of an elliptical hole goes to zero~Fig. 4!. For classical elas-
ticity, the maximum stress for the elliptical configuratio
used in the limiting process occurs at the ends of the m
axis. This peak valuesmax, is given by~from Inglis @19#!

smax5KTs0 , KT52a/b (2.3)

In ~2.3!, KT is the stress concentration factor. On passing
the limit of a crack (b→0), KT blows up reflecting the stres
singularity so generated. In Griffith’s incremental treatme
wherein loading is gradually applied, the corresponding
sult is

KT5
E

s0
lnS cosh

2s0

E
1

a

b
sinh

2s0

E D (2.4)

whereE remains Young’s modulus and a state of plane str
is assumed.6 An analogous treatment for the ellipse tendi
to a crack under uniaxial tension yields similar results. T
is, stresses are ord(lnb) as b→0 instead of ord(b21) as in
Eq. ~2.3!. Nevertheless, they are still singular.

A further example of the effects of relaxing the sm
deflection assumption may be obtained on revisiting the
ton ring configuration in the Introduction (P4 of Table 2 and
Fig. 2c!. Once the ring is allowed to deform along with th
cylinder wall, the power singularity of Table 2 leads to inte

6Mansfield@52# derives the same result as Eq.~2.4!. The actual theory used in all o
these incremental elasticity analyses is an approximate rate-of-deformation theor~see
Truesdell@53#!.
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Fig. 6 Barenblatt’s crack tip
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sentative of the applied far-field tensile traction parallel
they-axis: These tractions need not be uniform but are to
symmetric abouty50. Next, define the coefficient of th
singularity due tos0 , the stress intensity factorK I , in ac-
cordance with usual practice. To wit,

K I5 lim
x→02

A2pxsy u
y50

(2.6)

whereinsy is the normal stress component in they-direction
induced bys0 alone. Now apply a pair of tensile line load
to the crack flanks which are equal and opposite. These
loads tend to close the crack. If their strength isF per unit
thickness and they act on the crack flanks at a distancx
from the crack tip, the associated stress intensity factor,K I8 ,
is negative and given by~Tada, Paris, and Irwin@55#, p 3.6!

K I852FA 2

px
(2.7)

Introducing cohesive stressessc5sc(x) by replacingF by
scdx, then integrating, gives the negative stress inten
induced by the closing tractions: Equating the result toK I ,
the factor due to the far-field loadings0 , then renders the
configuration singularity free. That is, there is no crack-
singular stress field if

K I5A2

p E
0

dc scdx

Ax
(2.8)

wheredc is the extent of the cohesive zone. Under this co
dition, the crack opening profile forms a cusp~see close-up
of Fig. 6!, with a crack opening displacement,n on y50
(x.0), of the form

n u
y50
x.0

5
11k

6m
sc u

x50

F S x3

L D 1/2

1O~x5/2!G as x→01

(2.9)

whereinm andk are as previously~Eq. ~1.3! et seq!, andL is
a normalizing length. The companion tensile stress ahea
the crack tip is given by

sy u
y50
x,0

5sc u
x50

F12S uxu
L D 1/2

1O~x3/2!G as x→02

(2.10)

Clearly the crack-tip stress of Eq.~2.10! is free of singulari-
ties.

In addition to introducing cohesive stresses and assum
the region over which they act is small, Barenblatt make
further ad hoc assumption regarding their distribution. T
second assumption has that the maximum possible valu
the right-hand side of Eq.~2.8! at failure does not depen
upon the applied loadings0 , and is always the same for
given material. He terms the right-hand side of Eq.~2.8! at
failure a material’s ‘‘modulus of cohesion’’ to reflect his a
sumption that it is a material property. This simplifying a
sumption obviates the need to determine explicitly the dis

,

flaw width, 2a, the compressive stress singularity due top0

is cancelled by the tensile stress singularity due topi . More
precisely, if

Da

2a
5sin2S pp0

4pi
D ~pi.p0! (2.5)

then there is no singularity for the configuration of Fig. 57

Subsequently, Barenblatt appreciated the fuller impli
tions of Zheltov and Khristianovitch@54# ~Barenblatt@56#!:
An extensive account of his resulting research, together w
a comprehensive bibliography of related work, may be fou
in Barenblatt@57#. To extend the applicability of Zheltov an
Khristianovitch’s model, Barenblatt introduces cohesive n
mal stresses to replace the applied pressurepi . Essentially,
he argues as follows:

i! that the heights of cracks are small relative to th
lengths so that they can be approximated
mathematically-sharp slits.

ii ! that under such circumstances, the immediate prox
ity of the crack flanks at the crack tip ensures th
intermolecular cohesive stresses act between the fla

iii ! that the distribution of such cohesive stresses can
adjusted so that the corresponding compressive sin
lar stress field completely negates any tensile sing
stress field due to far-field loading.

Barenblatt assumes that the extent of the near-tip zon
which cohesive stresses are applied is small relative to
overall crack length. Indeed, in a first implementation of
ideas for a specific crack configuration in Barenblatt@57#, he
considers a semi-infinite crack with a finite cohesive zo
~Fig. 6!: Hence, in effect, his cohesive zone is infinitesim
compared to the crack length. Even so, the cancellation
singularities can be effected, as shown next.

First, take rectangular Cartesian coordinatesx, y, with
origin O at the crack tip, as in Fig. 6. Then lets0 be repre-

7The result in Eq.~2.5! follows directly from the singularity coefficients given in Tada
Paris, and Irwin@55# on pp 5.1, 5.13.
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bution of cohesive stresses within the cohesive zone, no
easy task at the time of Barenblatt@56,57#. However, it has
two serious drawbacks.

First, an immediate consequence of the assumption is
the stress intensity factor at fracture due to any applied lo
ing such ass0 is also a material property, because it equ
in magnitude that due to cohesive stresses. Essentially, th
fore, the stress intensity factor due to applied loading
comes the key parameter controlling fracture. This is
same fracture criterionas used in models wheresingularities
are present~see subsequent Sections 3.1 and 3.3!.8 Hence,
while Barenblatt does indeed cancel singularities for cra
by introducing the concept of cohesive crack-flank stres
the manner in which he does so leads to an approach w
is equivalent to that practiced when singularities are active
far as fracture goes. Accordingly, Barenblatt’s approach c
not realize any practical improvement in fracture predict
as a result of negating crack-tip stress singularities.

Second, the assumption is not realistic. To explain, c
sider its analogue in elasticity in general. Taking the str
intensity factor at failure resulting from cohesive stresses
a material property would be akin to taking local stress
sultants in elasticity as material properties. This is not so
elasticity, it is the elastic moduli that are the material pro
erties. While local stress resultants can depend on the va
of such material properties, they can also depend on loa
and geometry and so are not material properties themse
With cohesive stresses, then, it is the cohesive str
separation laws that are material properties, not the st
intensity factors that can attend these laws.

It is possible to extend Barenblatt’s approach and can
singularities with cohesive stresses in other otherwise sin
lar configurations, albeit with the same drawbacks. For
ample, the keyway configuration in the Introduction (P5 of
Table 2 and Fig. 2d!. It is not clear, though, how it could b
extended to all of the other examples in the Introduction

In sum to date then, modifying the field equations of el
ticity would not seem to offer any real means of removi
stress singularities. On the other hand, what we learn f
Barenblatt@57# is that incorporating cohesive stresses in
boundary conditions can remove singular behavior. Cohe
stresses have also been used in this way to render mode
dislocations free of singularities: Such models have been
forward in Peierls@60# and other papers~see Hirth and Lothe
@61#, Chapter 8!. It would therefore appear that cohesiv
stresses might play a major role in the alleviation of sing
larities. Moreover, cohesive stresses are fundamental to s
mechanics, being the underlying source of constitutive re
tions. In contrast, it is not obvious that there is any fund
mental justification for making assumptions regarding th
distributions. Consequently, we next look to consider an
proach for including cohesive stress action without such
sumptions.
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2.3 Removing singularities via boundary conditions:
Introducing cohesive stresses

In the approach adopted here, we endorse Barenblatt’s a
ment that when surfaces come into extremely close prox
ity with one another, cohesive stresses have to act. We
follow Barenblatt in taking this interatomic action to be mo
eled with boundary conditions in continuum mechani
thereby facilitating analysis. We do not, though, accept a
of Barenblatt’s assumptions concerning cohesive stress
tributions. Rather, we introduce cohesive stresses via co
sive stress-separation laws and let these laws interact
the configuration of interest to determine cohesive stress
tributions. Initially, we treat cracks with the approach, th
we treat other singular configurations.

To begin, the nature of the cohesive stresses to be u
merits further discussion. Acohesive stress-separation la
for the normal stress at a single point on the surface of
elastic half-space as it is being removed from a secon
sketched in Fig. 7. The initial response there exhibits a ste
nearly linear, increase in cohesive stresssc with separations
above the equilibrium valuese . Thus, ass first exceedsse ,

sc5ke~s2se! (2.11)

where ke is the separation stiffness near equilibrium~the
dashed line slope in Fig. 7!. After reaching an ultimate value
sU , sc gradually decays to zero ass becomes large. The
overall character of the cohesive stress versus separatio
sponse is similar to that for the attractive force versus se
ration response for an isolated pair of atoms or molecules
fact, physically it is the result of an integration or combin
tion of such force-separation responses.

Carrying out such integrations via first-principle calcul
tions is a challenging analytical task. However, for the fi
part of the curve—the linear stress-separation law—we
simply estimate the response of the accumulation of atom
molecules directly. To do this, we obtain and fit the bu
response in experiments so as to back out cohesive law s
nesses. For example, to use a uniaxial tension test to d
mine ke of Eq. ~2.11!, reconsider Fig. 2e with the epoxy
replaced by linear springs that are supposed to replicate

is
arities

Fig. 7 Schematic of cohesive stress-separation law
8Willis @58# and Goodier@59# provide alternative arguments that, as a result of
assumptions, Barenblatt’s approach reduces to the same as for cracks with singu
present.
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initial cohesive law for steel. Then matching the respon
from the springs with that for a solid steel bar gives

ke5E/se (2.12)

For Fig. 2e, E would be Young’s modulus for steel: In gen
eral,E is Young’s modulus for whatever material is involve
Hence for uniaxial tension, our initial cohesive law is E
~2.11! with ke as in Eq.~2.12!. A consequence of this mean
of estimatingke is that the initial cohesive law passes wh
might be termed a ‘‘patch test’’ and is consistent with t
surrounding continuum.

The foregoing is a possible, even if somewhat crude, p
cedure for estimatingke in the elastic regime since materi
defects in bulk specimens do not have a marked influenc
response in this regime. At higher stresses, though, we
not employ such an inverse approach because materia
fects do produce significant effects. For present purpo
however, the remainder of the curve is not critical since
are primarily concerned with elastic response. According
we adopt the highly idealized assumption of a perfe
defect-free, brittle material. Then there do exist estima
from solid-state physics of a material’s ultimate stress~see,
eg, Cherepanov@62#, p 36, which givessU'E/10). We can
also set the area under the curve—the work of adhesion
twice the surface energy, another material property for wh
estimates can be obtained~ibid!. Regarding the decay rate
ass→`, we can just directly integrate that associated w
pair-wise atomic or molecular forces, ignoring other intera
tions. For example, the potential of Lennard-Jones@63# for
van der Waals’ forces at large separations has them deca
as 1/s7 as s→`: Direct integration then givessc decaying
as 1/s3 as s→` ~see, eg, Israelachvili@64#, Section 10.2!.
Such a derivation does not properly account for interact
and shielding effects, but suffices here.

The choice ofke so that it is consistent with theke im-
plicit in the elastic constitutive relations of the surroundi
continuum offers some attributes in elastic stress analysi
demonstration thereof follows on reconsidering the probl
of a circular hole in an elastic plate under all-round far-fie
tension~Fig. 4 with a5b therein!. The classical solution to
this problem is given in Lame´ @65#, Article 80. It features a
KT52 for the hoop stress at the hole’s edge~see Eqs.~2.3!
with a5b). However, in this solution, if one sits at the edg
of the hole then takes the limit as the hole disappears,
obtains the physically anomalous result of the persistenc
this stress concentration even when the plate becomes w
without a hole. What is needed to remove this anomal
result is the recognition thatcohesive tractions must acton
the hole surface as it closes. When the hole is very small,
associated cohesive stress-separation law takes the for
Eq. ~2.11!. Then, provided the stiffness therein is taken so
to be consistent with the elastic constitutive relations of
surrounding continuum, a state of uniform biaxial tension
recovered throughout the plate when the hole disapp
~Sinclair and Meda@66#!.9
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While the foregoing describes a greatly simplified a
proach for determining cohesive stress-separation laws
suffices for the discussion that follows here. We next co
pare various treatments of the symmetrically loaded ma
ematically sharp crack with and without such cohesive la

The traditional conditions on the crack plane for t
stress-free mathematically sharp crack under symme
~Mode I! loading are:

sy5txy50, for x,0

v50, txy50, for x.0 (2.13)

where thex and y rectangular coordinates are as in Fig.
sy andtxy are normal and shear stress components in th
coordinates, andv is the displacement in they-direction. In
contrast, recognizing that for the mathematically sharp cr
cohesive stresses must act as Barenblatt did, then inse
them via Eq.~2.11!, the conditions on the crack plane are

sy5ke~n12n2!, txy50, for x,0

n50, txy50, for x.0 (2.14)

wheren1 is the displacement of the upper crack flank,v2

that of the lower~ie, n65n at y56se/2). Settingke50 in
Eqs. ~2.14! give Eqs.~2.13!. In effect, therefore, traditiona
conditions overlook the cohesive interaction between
flanks that physically must occur.

What now becomes apparent, once we start to introd
interatomic considerations, is that whenx,0, the boundary
conditions hold aty5se/2 for the upper crack flank andy
52se/2 for the lower. That is, through the centers of atom
comprising the bottom surface of the upper half-space,
top of the lower. To be consistent then, we should view c
ditions ahead of the crack tip as applying at the same lo
tions for their respective half-spaces. As a result, Eqs.~2.13!
and~2.14! must have a cohesive law ahead of the crack w

le. If
ohe-

Fig. 8 Sketches of atomic or molecular ‘‘springs’’ at a sha
crack-tip for various boundary conditions:a) classical stress-free
conditions,b) Barenblatt’s cohesive stress conditions,c) consistent
cohesive stress conditions,d) alternate cohesive stress condition
9This assumes there is no activation energy or other impediment to closing the ho
there were, the closing cohesive law would have to be modified. Nonetheless, a
sive law would still have to act as the hole closes.
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an infinite stiffness forn15n250 there, as required by th
second of Eqs.~2.13! and ~2.14!. This situation is indicated
schematically in Fig. 8a andb, wherein circles represent a
oms and springs with stiffnessk represent cohesive laws.

A more consistent introduction of cohesive laws for t
mathematically sharp crack under symmetric loading tak
on the crack plane,

sy5ke~n12n2!, txy50, for all x (2.15)

Then the same cohesive law acts throughout, consistent
the same material comprising the half-spaces both in fr
and in back of the crack tip~Fig. 8c!.

An alternative crack-tip configuration sometimes imp
mented in the literature just inserts the cohesive law ahea
the tip while maintaining stress-free crack flanks. The con
tions on the crack plane for this type of crack tip are:

sy5txy50, for x,0

sy5ke~n12n2!, txy50, for x.0 (2.16)

Now, in effect, the cohesive law in back of the crack tip h
zero stiffness~Fig. 8d!. For this choice to be physically jus
tifiable, appropriate arguments from solid state physics n
to be made. Presumably such arguments reflect a histor
the crack flanks which, at one time, had them at significan
greater separations than for the mathematically sharp cr

For Eqs.~2.13! and ~2.14!, with their effectively infinite
stiffnesses, singularities result. This is shown asymptotic
in Williams @20# for the traditional conditions, and in Sincla
@67# for Barenblatt’s conditions.10 Indeed, for Eqs.~2.14! a
singularity is necessary if cancellation of singularities is
be effected as in Barenblatt@57#. For Eqs.~2.15! and~2.16!,
with their absence of infinite stiffnesses, no singularities
sult ~Sinclair @67#!. For Eqs.~2.15!, no singularity is clearly
the result to be expected, there being no discontinuity
either boundary directions or conditions.

Thus, the presence of effectively an infinite stiffness in
cohesive law is what is the underlying source of the sin
larity for the mathematically sharp crack under symme
loading. The situation is akin to contact/impact in rigid bo
dynamics. There, rigid bodies with their infinite stiffness
lead to infinite contact forces. Once deformation is admit
and finite stiffnesses introduced, finite contact forces res
Likewise with only finite stiffnesses in cohesive laws, fini
rather than singular stresses result for the crack.

At this time, the use of cohesive/adhesive laws in bou
ary conditions in solid mechanics has seen quite widesp
use. Sinclair@68# provides a recent bibliography: Most of th
references therein cancel singularities after Barenblatt@57#,
but some introduce cohesive/ adhesive laws ahead of c
tips instead. An early example of the latter type of impleme
tation is Cribb and Tomkins@69#. A fairly recent review of a
number of contributions of this ilk is furnished in Needlem
@70#. An implementation of Eqs.~2.15! when ke is backed
out from constitutive relations is summarized in Sincla
Meda and Smallwood@71#.
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In Sinclair et al @71#, cohesive laws are taken to a
throughout the length of the mathematically sharp crack
the outset before any external loading is applied~Fig. 9a!.
That is, no assumption is made that cohesive stresses
confined to a small region near the crack tip, but rather
cohesive law itself interacts with the configuration to det
mine cohesive stress distributions. Not surprisingly, this
only leads to finite stresses but also to a stress concentra
factor of unity for the mathematically sharp crack. This h
to be the case when the cohesive law is made consistent
the surrounding continuum because then the continu
never knows the mathematically sharp crack is present. H
is it, then, that the real stress concentration occurring at cr
tips can be reflected by this type of modeling?

The answer lies in treating cracks that are not mathem
cally sharp. One way of doing this is to proceed as in Griffi
@51# and form cracks via elliptical holes in elastic plate
Then two types of configuration can be distinguished. T
first has stress-free crack surfaces~Fig. 9b!. This occurs
when the root radiusr 0 of the elliptical hole is sufficiently
large. Here, by sufficiently large is meant such that the fi
pair of atoms or molecules on opposite flanks at the tip
separated by a sufficient distance so that the cohesive
itself sets the surface tractions for this pair to zero. That
this distance is a sufficient number of multiplesm of the
equilibrium separationse so that the law of Fig. 7 hassc

50 effectively ~see close-up in Fig. 9b!. The second has
cohesive stresses acting near its tip~Fig. 9c!. This occurs
when the root radius decreases from the minimum value
quired for stress-free flanks. Ultimately this configuration b
comes the mathematically sharp crack as the root radius
creases still further.

Resulting stress concentration factors for stress-f
cracks coincide with classicalKT ~ie, as on the right-hand
side of Eqs.~2.3! plus one for transverse tension alone!.
Thereafter, as root radii are decreased so that cohesive s
starts to act,KT fall below classical values. Ultimately for a
small but nonzero root radius, the crack closes and aKT of
unity results, the same as for the mathematically sharp crein.

Fig. 9 Crack flank configurations when introducing cohes
stresses:a) mathematically sharp crack,b) stress-free crack,c)
intervening crack
10Here, by Barenblatt’s conditions we mean Eqs.~2.14!: While Barenblatt@57# does not
explicitly give these conditions, they are nonetheless implicit in the approach the
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Other erstwhile singular configurations can be rende
singularity-free by similar means. Viewed from a cohesiv
adhesive stress perspective, it is possible to identify ef
tively infinite stiffnesses in almost all of the examples
stress singularities given in the Introduction. Hence their s
gular nature. When cohesive/adhesive laws without infin
stiffnesses are introduced, these examples are rid of s
singularities.

To explain further, traditional contact and clamped con
tions are really simplifications of cohesive or adhesive c
ditions. When exchanged for the latter, only two princip
types of boundary conditions remain in planar elastic
cohesive/adhesive conditions and stress-free conditi
When these last two types of boundary conditions act on
in-plane geometry which entails a vertex anglef of p or
less, no power singularities are possible~Sinclair @67#!.
When effectively infinite stiffnesses in cohesive/adhes
laws are removed on lines of symmetry or antisymmetry,
examples in the Introduction all havef<p, hence no power
singularities. Moreover, there are no log singularities
these two types of boundary conditions provided there are
step discontinuities in shear tractions whenf5p. This last
requirement, in particular, means that one cannot implem
the shear counterpart of Fig. 8d for antisymmetric~Mode II!
loading of a crack if one is to avoid log singularities. It al
means any shear tractions in contact problems with sh
edges must go to zero continuously, even if very rapid
outside of contact regions if one is to avoid log singulariti
Further explanation is given in Sinclair@72#.

While the introduction of cohesive/adhesive laws with
nite stiffnesses and no shear jumps shows promise of rid
elasticity of most if not all stress singularities, the impleme
tation of this approach in toto faces some stiff challeng
These principally stem from the determination of the app
priate cohesive/adhesive law. For example, consider the
of brittle fracture, arguably the simplest physical respon
once the limit of elastic behavior is reached. For real ma
rials that behave in a brittle fashion, there is a question a
what ultimate stress governs fracture in the presence of
finite but highly concentrated stresses. It is not likely to be
high a strength as the material’s theoretical ultimate str
sU'E/10. Nor is it likely to be as low as the material
ultimate stress as determined using standard tension t
su'E/1000. In the short term, an estimate of the applica
intervening value for a limited range of sizes might be ma
via direct calibration with test results. In the long term, th
question is likely to require modeling of the material’s m
crostructure itself. In addition to such modeling issues c
fronting the full implementation of boundary conditions wi
cohesive/adhesive laws, companion analysis is now non
ear, even in the elastic regime. And this analysis must b
sufficient refinement to accurately capture the local stres
involved, with their high gradients. For the present, the
fore, we can expect to continue to face the longstanding c
lenges represented by singularity analysis and interpreta
even for configurations that could be freed of singularit
with cohesive/adhesive laws.
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2.4 Removing singularities via boundary conditions:
Enforcing inequality constraints

Alternative modifications to boundary conditions which c
remove stress singularities may be found in additional lo
inequalities that are physically required. We begin by de
onstrating the way in which this occurs for somesimple,
frictionless, contact problems.

The different types of frictionless contact entertained
this regard may be distinguished by whether or not they
conforming. Here, by ‘‘conforming’’ is meant contact which
from no load to full load, has the indentor and indented m
terial share a common tangent as the contact region’s bo
ary is approached from outside. An example is a roller o
relatively flat surface, as occurs in roller bearings. Initial
before any loading, the contact region for this configurat
consists of a line through the contact pointC ~Fig. 10a!.
Subsequently, under loading,C splits into C and C8 as the
contact region spreads~Fig. 10b!. Throughout, contact is
conforming atC ~or C8) in the above sense. A further ex
ample is the closely conforming contact of a journal bear
which tends to produce a larger contact region under l
~Fig. 10c!. In contrast is a sharp-edged indentor or flat pun
contacting a horizontal surface. This is an example of n
conforming contact at bothC andC8 ~Fig. 10d!.

In addition to assuming contact in the configurations
Fig. 10 is frictionless or perfectly lubricated, we further sim
plify the exposition by taking the indentors~shown vertically
hatched! to be rigid. We also assume that they are long in
out-of-plane direction so that the 2D state of plane str
applies. Then traditional local boundary conditions atC in
Fig. 10b, in terms of ther ,u coordinates of Fig. 11, take th
form

su5t ru50 on u5p

uu5u0 , t ru50, on u50 (2.17)

for r .0. The first of Eqs.~2.17! are the stress-free cond
tions external to the contact region. The second reflectslocal
indentation by an amountu05u0(r ) without any friction
within the contact region. The local fields for Eqs.~2.17!
admit to being supplemented by their fully homogeneo
counterparts, namely those for Eqs.~2.17! with u050. Then
we recover the classical boundary conditions for a crack~cf,
Eqs. ~2.13!!, so that inverse-square-root stress singularit
are possible.

To remove the possibility of stress singularities, we adjo
physically sensible constraints. These insist that within
contact region there can be no tensile contact stress11

while without there can be no interpenetration or cont
between the indentor and the indented material. Thus
require

su<0 on u50

uu,R02AR0
22r 2 on u5p (2.18)

11Actually, adhesive stresses can supply tensile stresses within the contact regio
for most interfaces these stresses are negligible. Johnson@73#, Section 5.5, has an
interesting discussion of such effects.
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for r .0, whereR0 is the radius of the indenting roller. Given
compliance with these added restrictions, singular response
is no longer possible.

To see this, consider what happens otherwise. There are
two cases.

i! Singular stresses participate with a positive stress in-
tensity factor ofK I(K I.0).

ii ! Singular stresses participate with a negative stress in-
tensity factor of2K I .

Under i , the singular stress field must dominate all others as
C is approached from within the contact region, so that the
contact stresses must become tensile~indicated onu50 in
Fig. 11!. This is in violation of the first of Eqs.~2.18!. Under
i i , the displacement of the indented material just outsideC is
vertically upwards and consequently interpenetrates the in-
dentor~indicated onu5p in Fig. 11!. This is in violation of
the second of Eqs.~2.18!. Hence, the classical singular fields
associated with a crack cannot participate in the conforming
contact configuration of Fig. 10b if the inequality constraints
of Eqs.~2.18! are enforced.

Fig. 10 Contact configurations:a) unloaded roller bearing,b) loaded roller bearing,c) journal bearing under load,d) piston ring pressing
against a cylinder wall~deformation not indicated!

Fig. 11 Local contact configuration atC in Fig. 10b: coordinates
and consequences of singularities
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The question that now arises is can we, in actuality,
force the inequality constraints of Eqs.~2.18! and so remove
singularities? The fact that Eqs.~2.18! would seem to be
physically sensible and therefore desirable does not nece
ily mean they can be enforced within classical elasticity. A
ter all, singularities in general are nonphysical so it would
physically sensible and desirable if we could simply legisl
them out of elastic solutions. Unfortunately, such legislat
typically leads to the posing of a problem that has no so
tion, the local regular elastic fields being incomplete witho
their singular counterparts.

For conforming contact, however, we have an additio
degree of freedom of which we can take advantage. Thi
the extent of the contact region~ie, the length betweenC and
C8 that 2l denotes in Fig. 10b!. By suitably adjusting this
extent, the inverse-square-root stress singularity can be
moved. Then, since there are no other singular fields wi
elasticity satisfying the local boundary conditions Eq
~2.17!, or their homogeneous counterparts, the configura
is rendered singularity free.

Implicitly, this adjustment of contact extent so as to r
move stress singularities is what Hertz did when he sol
contact problems of the genre of the roller of Fig. 10a andb
~Hertz @74#!. His solutions all feature contact stresses wh
are nonsingular and, indeed, go to zero at the edges o
contact region. For example, for the roller of Fig. 10b, the
Hertzian contact stress is

sy52
2F

p l 2 Al 22x2 on y50 (2.19)

for 2 l<x< l , whereF is the force per unit length in the
out-of-plane direction, andx and y are now as in Fig. 10b
with origin O in the middle of the contact region.

The same situation obtains for frictionless conformi
contact by rigid indentors in general. Namely, that the ext
of the contact region can be adjusted so that only comp
sive tractions occur within it and there is no interpenetrat
outside of it. Given compliance with these constrain
stresses are nonsingular. An example of more extensive
forming contact than that of the roller on the half-space
der Hertzian assumptions is furnished in Steuermann@75#.
Therein closed-form expressions for contact stresses s
they behave as ord(r 1/2) as r→0 at the edges of the conta
region, the same behavior as in Eqs.~2.19!. As a further
example, the closely conforming contact of Fig. 10c is
treated in Persson@76#, and demonstrates that stress sing
larities can also be removed in this instance.

The same situation does not obtain for nonconform
contact. Herein the sharp edges present can set the limi
the contact region so that the contact extent is not availa
to be adjusted to remove singular behavior. This is the c
for the indentor of Fig. 10d. Such configurations require th
introduction of appropriate cohesive/adhesive laws to ren
them singularity free~as in Section 2.3!.

We now admittwo extensionsto the limited class of con-
tact problems considered heretofore. First, we entertain
introduction of friction effects. To obtain a bound on thes
effects to complement that of frictionless conditions, we c
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assume that there is no slipping whatsoever. The resul
stick conditions within the contact region, in terms of th
coordinates of Fig. 11, take the form

uu5u0 , ur50, on u50 (2.20)

for r .0. In Eqs.~2.20!, ur is the radial displacement whic
is set to zero by virtue of the indented material complet
sticking to the rigid indentor. Again the homogeneous cou
terpart of Eqs.~2.20!, taken together with the stress-free co
dition onu5p in Eqs.~2.17!, admits the possibility of stres
singularities. These are the same as for the adhering tir
the Introduction (P3 of Table 2 and Fig. 2b! which has sin-
gularities of ord (r 21/2cos(h ln r)) and ord (r 21/2sin(h ln r)).
Hence we can anticipate the same response asr→0 at C in
Fig. 11. These two singularities occur in combination intwo
distinct local fieldswhich can participate independently o
each other~except for incompressible plane strain for whic
h50 and there is but one local singular field—see E
~1.4!!. Thus adjusting theoneparameter we have available t
us, the contact extent, is generally not sufficient to remo
both of them. Accordingly, now it can be impossible to fin
elastic solutions in compliance with Eqs.~2.18!, and singular
stresses can occur. For example, returning to the Hert
contact of the roller of Fig. 10b but now with stick condi-
tions as in Eqs.~2.20!, the normal contact stress becomes

sy52
2F

p l 2 FAl 22x2 cosS h lnS l 2x

l 1xD D
1

2h lx

Al 22x2
sinS h lnS l 2x

l 1xD D G (2.21)

on y50, for 2 l ,x, l .12 The shear contact stress is sim
larly singular.

To alleviate the singular response of direct conformi
contact with no slip, one can allow some lateral displa
ment. This can be done by applying the load incrementa
so that surface material outside the contact region is at l
allowed to move laterally prior to coming into contact. Mo
sakovskii@78# describes the implementation of such a phy
cally more realistic approach. Results are nonsingular
comply with the constraints of Eqs.~2.18!. Indeed, for the
normal contact stress,sy is as in Eqs.~2.21! but with h
50, so that the Hertzian contact stress of Eqs.~2.19! is re-
covered. Similar results obtain for the axisymmetric count
part ~see Goodman@79# and Mossakovskii@80#!.13 For both
configurations, though, in the limit as the edge of the cont
region is approached from within, the ratio of the shear c
tact stress divided by the normal approaches infinity. T
implies that an infinite coefficient of friction is needed for n
slip once contact is made. This in turn suggests that we
tertain the possibility of slip in the outer portions of th
contact region itself.

12The derivation of Eq.~2.21! is straightforward using complex potential methods as
eg, Gladwell@77#, Chapter 4.
13Spence subsequently showed via dimensional analysis that the stress fields inv
are self similar, thereby enabling direct implementation rather than incremental~Spence
@81#!.
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For such slip under a rigid indentor up to the contact lim
at C in Fig. 11, the boundary conditions take the form

uu5u0 , t ru5 f su , on u50 (2.22)

for r .0. In Eqs.~2.22!, f has the magnitude of the coeffi
cient of friction. The sign off is taken to be such thatt ru

opposes any slipping displacementur . Consequently for
compressive normal contact stresses, sgnf52sgnur , where
sgn is the signum function. The conditions of Eqs.~2.22!
with the first of Eqs.~2.17! prescribe local boundary cond
tions for a slip-to-free transition: When taken abutting t
displacement requirements in Eqs.~2.20! if ut ruu,u f suu,
they prescribe local boundary conditions for a slip-to-st
transition. For both transition configurations, it is possible
show only a single singularity exists. Accordingly, by appr
priately adjusting the positions of these two transitions, b
singularities can be removed. To capture the physics be
the loading needs to continue to be applied incrementally~or
effectively so via similarity arguments!. Such an analysis
may be found in Spence@82# and produces singularity-fre
stresses.

As a second extension to the class of contact proble
considered, we admitdeformation of the indentor. Results
remain essentially the same. For conforming contact with
friction, or with friction but allowing for slip, physically rea
sonable inequalities can be complied with by adjust
boundary region extents and configurations rendered fre
singularities. Dundurs and Comninou@83# furnish
asymptotic arguments that obeying such inequality c
straints removes singular behavior, while there are a num
of examples showing that one can actually adjust extent
do this ~eg, Johnson@73#!.

In sum, when sufficient degrees of freedom are availa
to enable compliance with the pertinent inequalities, str
singularities can be removed from conforming contact pr
lems. The resulting nonsingular stresses may be loo
termed Hertzian, and have been found to be generally s
ported by experiments~Johnson@73#, Chapter 4!. In these
circumstances, therefore, the stress analyst should make
ery effort to comply with the inequality conditions.

3 TRYING TO MAKE PHYSICAL SENSE
OF PERSISTENT STRESS SINGULARITIES

3.1 Interpreting crack-tip singularities: The energy
release rate hypotheses

We now turn to configurations in elasticity for which th
foregoing strategies, while removing singular stresses, d
with an approach that is yet not mature. Principal amon
these in their practical importance are those involving cra
as treated within classical elasticity, so we initially focus
trying to interpret the crack-tip singularities.

Griffith was first to appreciate that it is futile to attempt
directly interpret the implications for fracture of singul
crack-tip stresses. He also appreciated that, while sing
nonetheless these stresses are integrable; therefore the
be integrated to arrive at a bounded quantity which may
physically interpreted. In essence, the particular integra
it
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quantity taken in Griffith@51# is theenergy release rateac-
companying crack extensionG, and Griffith hypothesized
that G controls brittle fracture at cracks.

The basic elements of the argument which establish
energy release rate for incipient crack propagation and de
its role in a brittle fracture criterion may be described
follows. To fix ideas, reconsider the tensile crack of Fig.
but now with the surrounding material being strictly line
elastic all the way to fast fracture. Such a material is som
times termed ‘‘perfectly brittle.’’ By symmetry in Fig. 3, ten
sile crack extension can be expected to occur along
x-axis where the maximum tensile stresses occur. The en
available to drive this extension comes from the strain
ergy of the material surrounding the crack tip: Unlike
contributing stress and strain fields, the strain energy
bounded by virtue of being an integral of these fields. If t
rate such energy releases at the newly formed surfaces in
extension exceeds the rate at which it needs to be supplie
form them, brittle fracture is hypothesized to occur.

One way in which such an energy argument for cra
extension can be implemented is as follows. First, comp
the drop in strain energy accompanying a crack extens
within some region surrounding the crack tip. Next, subtr
the energy transported away as work terms across the bo
ary of this region not including the newly formed crack su
faces. Thus, the energy released on the crack extensio
obtained. Dividing this energy by the extension length, a
taking the limit as this length goes to zero, then gives
energy release rate for crack propagation.

Alternatively, one can simply compute the strain ener
released as work terms on the boundary of the newly form
crack surfaces, then divide by the crack extension length
take the limit as it goes to zero to obtain the energy rele
rate. Both approaches, properly carried out, give the sa
result. Both are true energy balances in the sense of clas
physics. Both have the strain energy as the potential en
source, since this is the ability of an elastic system to p
form work by virtue of its deformed state. Given this equiv
lence, we choose to focus further discussion on the sec
approach here because it is relatively direct.14

In describing such an energy argument, we follow Irw
@84# because the analysis therein is elegant in its simplic
Hence we consider a crack tip under symmetric load
which produces a small extensionda aligned with the origi-
nal crack~Fig. 12!. Prior to the extension, the tensile stre
ahead of the crack tipsy and the crack opening displace
ment back of itv can be identified using an asymptot
analysis as in Williams@20#. Locally this results in

sy5
K I

A2px
1O~x1/2! as x→0~x.0!

14It is unfortunate that the variational statement of equilibrium in elasticity is of
termed the ‘‘theorem of minimum potential energy’’ and the functional involved in t
theorem the ‘‘potential energy.’’ This has led some to confuse this functional with
true elastic potential energy, the strain energy. By serendipity, though, it is possib
make this mistake and defineG as a derivative of this functional and still obtain th
correct energy release rate~essentially this happens because there is no energy tr
ported across parts of the boundary where displacements are held fixed!.
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Fig. 12 Tensile stress ahead of a crack and displacements ac
panying a small extension under symmetric~Mode I! loading
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Fig. 13 Modes of deformation at a crack tip:a) Mode I, b) Mode
II, c) Mode III
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11k

2m
K IA2x

2p
1O~ uxu3/2! as x→0~x,0! (3.1)

for y50, whereinK I continues as the symmetric, or Mode
stress intensity factor. The displacement accompanying
extensiondv therefore is

dv5
11k

2m
K I@11O~da!#Ada2x

2p

1O~~da2x!3/2! as x→da~x,da! (3.2)

on y50. In Eqs.~3.2!, the term in square brackets accoun
for the perturbation inK I resulting from the extension. Now
the strain energy released on the extension must equa
work needed to heal it and restore the crack to its unexten
state. For an infinitesimal element of the upper flank in
extension, this healing work is one half force times displa
ment, or (1/2)(sy dx)(dv). Adding up all such contribu-
tions for both the upper and lower flanks of the crack ext
sion gives the total work needed to heal it. Dividing by t
extension lengthda, then taking the limit asda→0, gives
the energy releaserate for crack propagationG. That is,

G5 lim
da→0

1

da E0

da

sy dv dx (3.3)

To evaluateG, we introducesy of Eq. ~3.1! anddv of Eq.
~3.2! into Eq. ~3.3! to obtain

G5
11k

4pm
K I

2 lim
da→0

F 1

da E0

daAda2x

x
dx1o~da!G (3.4)

The integral in Eq.~3.4! is readily performed by takingx
5da sin2 t, thereby giving
the

ts
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GI5
11k

8m
K I

2 (3.5)

In Eq. ~3.5! we have added the subscript I toG to distinguish
it as being associated with Mode I or tensile crack extens
~with deformation as sketched in Fig. 13a!.

It is also possible to determine the energy release
associated with Mode II or shear crack extension~Fig. 13b!.
The corresponding energy release rateGII is

GII5 lim
da→0

1

da E0

da

txy du dx (3.6)

Proceeding analogously to the derivation of Eq.~3.5! leads to

GII5
11k

8m
K II

2 (3.7)

whereK II is the stress intensity factor in Mode II. There is
further mode of crack propagation associated with out-
plane shear, Mode III~Fig. 13c!. For this mode, a similar
derivation gives

GIII 5
K III

2

2m
(3.8)

whereK III is the stress intensity factor in Mode III.
Each of the foregoing modes of crack extension is as

ciated with a different way of separating material to for
new surfaces. Consequently, each must be assessed ind
ally in a given application in order to enable meaning
comparisons with corresponding critical values. In practi
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brittle fracture typically occurs in tension rather than
shear. This means that under general loading, with both s
metric and antisymmetric contributions, crack extension m
well not occur aligned with the originating crack~as in Fig.
12!, but rather along a ray emanating from the crack
which maximizes the energy release rate in Mode I. Even
we still need to be able to distinguish amongst the differ
contributions to the total energy release rate so as to ob
the maximumGI and determine the ray on which it acts f
a given loading.

Two observations can be made on the foregoing res
for energy release rates. First, only the singular stresses
their displacements contribute to these rates. Second, ac
ing the hypothesis thatGI , GII , andGIII control brittle frac-
ture in their various modes is completely equivalent to
cepting the corresponding stress intensity factors,K I , K II ,
andK III , in this role.

The literature has a number of other developments of
elastic energy argument for brittle fracture which are con
tent with the preceding.15 Several of these express the ener
release rate with path-independent integrals which enc
the crack tip: in chronological order, Eshelby@86#, Sanders
@87#, Cherepanov@36#, and Rice@88#. The isolation of the
contributions from different modes of crack propagation i
little more awkward to effect with these integrals. This m
in part account for current practice preferring to expre
brittle fracture criteria in terms of stress intensity facto
rather than energy release rates.

Originally, Griffith hypothesized that brittle fracture oc
curs when the energy release rate equals the surface en
of the solid being fractured. Later, Irwin@89# and Orowan
@90# independently argued that the energy ‘‘sink’’ for fractu
could also include some plastic dissipation, provided the
tent of any accompanying yield region is limited to the im
mediate neighborhood of the crack tip. This extension
Griffith’s original hypothesis realized the practical benefit
enabling the approach to be applied to metals. Aside fr
these hypotheses as to acceptable energy sinks for frac
there is a further basic hypothesis underlying either
proach. This has that the integral of something which is
physically appropriate—namely singular crack-tip stresse
can yet furnish something which is—namely the energy
lease rates accompanying crack extension. Thus, the en
arguments of classical fracture mechanics contain two
potheses: one for the energy sources for fracture, the o
for the energy sinks. Each one needs to be complied with
the approach to be successful. The extent to which they
in fact, can be judged by the degree of agreement of
physical evidence with predictions based on the pair.
review some physical data with this issue in mind
Section 3.4.

3.2 Energy release rates for interface cracks

The ease with which the singular fields for a crack can
integrated to provide energy release rates suggests tryin
-
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extend this means of singularity interpretation to other c
figurations. Perhaps the most natural to consider in this w
is theinterface crackconfiguration wherein material on eac
side of the crack plane can have different elastic moduli~Fig.
14!. Now, as noted in the Introduction, Williams@21# shows
that the inverse-square-root singularity of a crack can h
oscillatory multipliers. For example, in terms of the cylindr
cal polar coordinates of Fig. 14,

su5O~r 21/2cos~h ln r !!1O~r 21/2sin~h ln r !!

as r→0 (3.9)

on u50, whereh is as in Eq.~1.3!. That these possible loca
singular stresses do in fact participate in the response of
bal configurations is confirmed by solutions to such pro
lems, as in England@91#. Undertaking an analysis as earlie
for companion energy release rates associated with crack
tension along the interface then gives, for Mode I,

GI5c1 lim
da→0

@c8 cos~2h ln da!1c9 sin~2h ln da!#

(3.10)

where c, c8, and c9 are constants (generallyÞ0). Clearly
the limit in Eq. ~3.10! does not exist. A like result holds fo
GII , and accordingly neither is a well-defined quantity.
combination, however, the terms that are undefined inGI and
GII can be shown to cancel, so that a total energy release
does exist. Nonetheless, the inability to distinguish betw
modes is unsatisfactory for the reasons indicated ear
Moreover, the situation is not improved if crack extension
directions other than along the interface is entertained.
cordingly, the generally more nonphysical singular stres
of interface cracks would seem to require special attentio
order to effect satisfactory physical interpretations.

This need has occasioned a series of models for the in
face crack to be put forward since Williams@21#: the contact
zone model of Comninou@92#, the crack-opening-angle
model of Sinclair@93#, the intervening-layer models of At

be in

Fig. 14 An interface crack configuration
15There are also some articles which are not consistent and may be shown to
error—see Keating and Sinclair@85# for a review.
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Fig. 15 Crack-tip models for the interface crack:a) contact zone model,b) crack opening angle model,c) intervening layer model with
constant moduli,d) intervening layer model with continuously varying moduli
o

g

d

ials
the
kinson @94#, and the perturbed moduli model of He an
Hutchinson@95# and Suo and Hutchinson@96#. We review
these models next.

There is a further unsatisfactory aspect of elastic soluti
for interface cracks based on the model of Williams@21#. As
pointed out in England@91# and Malyshev and Salganik@97#,
the crack-flank displacements also oscillate and in so do
interpenetrate one another. This interference between
crack flanks lead Malyshev and Salganik to suggest introd
ing a contact zone for the crack flanks immediately conti
ous to the crack tip. Such acontact zone modelwas first
pursued in Comninou@92#, and subsequently has seen qu
extensive investigation—see references in Comninou@98#.
The basic elements of such a model are as follows.

In terms of the cylindrical polar coordinates of Fig. 15a,
three types of conditions near the original crack tip atO are
prescribed in the contact zone model for the interface cra
the matching conditions for perfect bonding ahead ofO,
d

ns

ing
the
uc-
u-

ite

ck:

suu
u501

5suu
u502

, t ruu
u501

5 t ruu
u502

ur u
u501

5ur u
u502

, uuu
u501

5 uuu
u502

(3.11)

for r .0; the frictionless contact conditions behindO,

suu
u5p

5suu
u52p

, uuu
u5p

5uuu
u52p

t ru50 on u56p (3.12)

for 0,r , l , where l is the extent of the contact zone; an
the stress-free conditions once contact ceases atO8,

su5t ru50 on u56p (3.13)

for r . l . Equations~3.11!–~3.13!, when taken together with
the planar elastic field equations for the respective mater
and boundary conditions describing loading remote from
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crack, can constitute a complete problem statement in e
ticity. In addition, though, we would like to adjoin a con
straint which prohibits interpenetration once conta
ceases—a primary motivation for the model in the fi
place—as well as a constraint which only admits compr
sive stresses within the contact zone. Can we do this?
answer is yes for two reasons. First, we can adjust the ex
of the contact regionl so as to remove the one singular fie
possible atO8, thereby ensuring no interpenetration: This
the same adjustment as used to the same end in friction
conforming contact in Section 2.4. Second, the local field
O ~elucidated in the Appendix of Comninou@92#! can feature
a compressive inverse-square-root singularity in the nor
stress within the contact zone~viz, in su on u5p in Fig.
15a!. Once present, this singular stress means that, no m
how hard we pull the overall configuration apart with remo
tensile loading, the finite biaxial tensile stresses so induce
O can never completely negate the infinite compressive n
mal stress there. Hence there can always exist a region, a
possibly a small one, in which contact stresses are comp
sive.

The question that now arises is when is such a local
gular stress field excited in global problems? Somewhat
prisingly, Comninou@92# shows that the closing of the crac
tips present in the contact zone models can occur in glo
configurations when the loading over the crack flanks is p
dominantly in the opening mode~as in Fig. 14!. In Comni-
nou @92#, when an interface crack is under uniform tens
loading at infinity, fields for the contact zone model are d
termined which have compressive stresses within the con
zone. These fields are also free of any interference betw
the crack flanks. Furthermore, the solution obtained once
contact zone model is adopted may be shown to be un
~see Comninou@98#!. Looking ahead of the crack tip in th
model (O in Fig. 15a!, we find the shear stress alone to
singular~see the Appendix in Comninou@92#!. This has to be
the case since a normal singular stress there, if tensile, w
separate the crack flanks in the contact zone, while if co
pressive, would cause them to overlap one another. The
sociated energy release rates for crack propagation along
interface are~Comninou@98#!

GI50, GII5
m̂1m̂2

4m1m2~m̂11m̂2!
K II

2

m̂15m11k1m2 , m̂25m21k2m1 (3.14)

The Mode I energy release rate is zero by virtue of th
being no singular normal stress on the bonded interfac
the contact zone model.

In an attempt to complement the contact zone model w
one which does permit crack propagation along the interf
in an opening mode accompanied by a positive energy
lease rate, the following simple tactic is suggested in Sinc
@93#. While the singular character of a crack can be increa
by the introduction of an abrupt material discontinuity on t
crack plane, it can be reduced by opening the angle s
tended at the crack tip prior to loading~Fig. 15b!. The two
effects can be adjusted so as to offset one another and
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cover the nonoscillatory inverse-square-root singularity o
crack in a single material. Thiscrack-opening-angle mode
shares with the contact zone model the matching conditi
for a perfectly bonded interface ahead of the crack
namely Eqs.~3.11!, and has stress-free conditions on t
crack flanks which are taken to subtend an angle ofF in the
unloaded state. That is, in terms of the cylindrical polar c
ordinates of Fig. 15b,

su50, t ru50, on u5p2F,2p (3.15)

for r .0. For given material moduli, the value ofF that
removes the oscillatory multiplier of the stress singularity
O may be found in Sinclair@93#. For this angle, the crack
flanks open without interference under tensile loading as
dicated in Fig. 15b.

The approach may be viewed as the dual of the con
zone model. In the contact zone model, contact of the cr
flanks is anticipated and boundary conditions thereon
dated to reflect this event. In the crack-opening-angle mo
crack opening is anticipated and the crack flanks angled a
to promote this event. For a specific applied tensile lo
assuming crack opening via the crack-opening-angle mo
can be shown to lead to a unique solution~the proof follows
along the lines of Knowles and Pucik@99#!. Both the normal
and shear stress on the bonded interface in such a solu
are singular~provided FÞ0). Companion energy releas
rates are given by

H GI

GII
J 5 H c

c8J @m1
2~11k2!21m2

2~11k1!2#

m1m2~m̂11m̂2!
K2 (3.16)

where m̂1 and m̂2 are as in Eqs.~3.14!, c and c8 are now
dimensionless constants whose values depend on el
moduli, andK is the one stress intensity factor present in t
model.

For a given interface crack configuration with predom
nantly tensile loading as in Fig. 14, both the contact zo
model and the crack-opening-angle model can be appl
Once a decision is made as to which model to use, the s
tion for that model is unique and free of interference betwe
crack flanks. So which one should we use? The answer is
obvious, but quite possibly neither. This is because, in cho
ing one or the other, themodeleris making the decision as to
the relative contributions of Mode I and Mode II to crac
propagation along the interface. In effect this decision h
that, for a broad spectrum of remote loadings having a s
nificant tensile component, the ratio ofGI to GII is to be in
one or the other of the but two fixed proportions prescrib
by Eqs. ~3.14! and ~3.16!. If it happens that this a prior
selection is physically appropriate, the use of the model c
sen may be justifiable. If not, then not. In general, themodel
should make the decision as to the relative participation
Modes I and II, and this decision should be sensitive to
specific loading being applied.

Atkinson @94# furnishes a pair of alternative models fo
the interface crack tip. These each have the attribute of
ting loading interact with the model itself to set relativ
mode participation. They both feature an interface la
which contains a stress-free crack. In the first~Fig. 15c!, the
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intervening layer is taken to be homogeneous with ela
moduli which are intermediate to the parent moduli (0<c
<1 in Fig. 15c!. In the second~Fig. 15d!, the intervening
layer is taken to have varying moduli which effect a contin
ous transition from those for one of the parent materials
the other~a linear variation is shown by way of simple e
ample!. For both of theseintervening-layer models, the
inverse-square-root singularities of a crack in a single m
rial are recovered together with their associated energy
lease rates, Eqs.~3.5! and ~3.7!. Therefore, response as
mode of crack propagation is essentially the same as f
crack in a single material. That is, in accordance with one
the following scenarios.

i! If any tensile Mode I fields are excited by the appli
loading, no interference or contact occurs betwe
crack flanks and Mode I propagation along the int
face is possible. Mode II contributions to propagati
may also be present under these circumstances.

ii ! If any compressive Mode I fields are excited, interpe
etration of the crack flanks is predicted and must
alleviated by admitting contact between them. Cra
propagation along the interface can only occur in Mo
II under these circumstances.

iii ! If Mode I fields are not excited at all, Mode II is obv
ously the only possibility for propagation along the i
terface. Such propagation may occur with or witho
contact between the crack flanks, depending on the
ticipation of other regular crack-tip fields.

Consequently here, under tension, there would not appe
be any reason for the modeler to fix the relative participat
of modes prior to applying actual loading.

For the models of Atkinson@94# to be physically appro-
priate, the heights of the layers (2h andh in Figs. 15c andd!
need to be physically reasoned. On the atomic/molec
level, one can envisage a small region in which the cohe
laws acting within material 1 switch to adhesive laws b
tween materials 1 and 2, then to cohesive laws within ma
rial 2. The height of this transition region can be expected
be of the order of several atomic/molecular diameters. C
stitutive laws can therefore also be expected to vary ove
similar size scale. Thus the incorporation of intervening la
ers into the global analysis of crack configurations is
without significant analytical challenges.

Nonetheless, the intervening-layer models of Atkins
@94# are conceptually valuable and support the mode of cr
propagation being dependent on applied loading in much
same way as for the crack in a homogeneous plate. It follo
that these models do not in general support the use of e
the contact zone model or the crack-opening-angle mo
Rather they lend support adopting the strategy for trea
interface cracks first put forward in He and Hutchinson@95#,
and subsequently amplified in Suo and Hutchinson@96#. This
strategy simply setsh of Eqs.~1.3!, ~3.9!, and~3.10! to zero
by suitably adjusting material moduli. Such aperturbed
moduli modelhas no oscillatory character and accompany
crack-flank interference, and has decoupled energy rel
rates,GI andGII , as in Eqs.~3.5! and ~3.7!.
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Further support for the perturbed moduli model ste
from the fact that, generally,h is small (uhu,7/40, see Eq.
~1.3!!. Hence setting it to zero does not change the abso
value of the singularity exponent much (,6%), nordoes it
necessitate dramatic changes in elastic moduli. Indeed,
plane strain, it is always possible to maintain the actual ra
of shear moduli sought in an application and geth to be zero
by adjusting a Poisson’s ratio while still maintaining it with
the physical range of zero to one half. More precisely in t
regard, one can proceed as follows. Without loss of gene
ity, number the materials so thatm1<m2 . Then replace the
actualk1 by k̂1 where

k̂15~k221!
m1

m2
11 (3.17)

This replacement value by itself ensuresh50 for plane
strain. For plane stress, though, some modifications to
true ratio of the shear moduli are needed to renderh50
when one shear modulus differs from the other by more t
a factor of three. Even so, the strategy would seem to be
most effective way of treating interface cracks within clas
cal elasticity at this time.

3.3 Interpreting other singularities: The K-controlled
annulus hypothesis

In attempting to interpret other singular configurations, it
natural at the outset to try and extend energy release
arguments. As a demonstration, we consider the sharp r
trant corner under symmetric loading~Fig. 16!.

The stresses directly ahead of the corner are dominate
the singular field there. Thus, in terms of the rectangu
Cartesian coordinates of Fig. 16,

Fig. 16 Tensile stress ahead of a reentrant corner and disp
ments accompanying a small extension under symmetric loadin
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Fig. 17 K-controlled annulus at a crack tip
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linear elastic fields for cracks to instances in which sm
scale yielding is admitted. These elements are as follows

In the immediate vicinity of a crack tip there exists
region wherein theK fields are just not physically appropr
ate by virtue of the singularity they contain. To keep t
development simple, enclose this region within a circle c
tered on the crack tip (R0 in Fig. 17!. If the radius of this
region in small enough, immediately outside it stresses
theK fields dominate those for all other elastic fields. As o
moves further away, the stresses of theK fields become of
comparable magnitude to the others present. Under these
cumstances, the region exterior toR0 may be subdivided
into an annular regionRa in which theK fields are valid and
dominant, and a still further removed exterior regionRe in
which theK fields, while valid, have comparable stresses
the regular fields~Fig. 17!. Within the annulusRa , then, the
K fields can be regarded as prescribing physically appro
ate traction boundary conditions for the innermost crack
regionR0 . In this sense,K can be expected to control wha
happens at the crack tip. If the material is perfectly britt
this meansK controls brittle fracture at the crack tip. If th
material is ductile but any yielding is confined to withinR0 ,
K may be still be viewed as controlling fracture at the cra
tip.

Before examining the implications of aK-controlled an-
nulus interpretation further, some additional clarification
the notion of theK stress fields dominating the other regul
stresses present in the annulus is helpful. At the outset,
might be tempted to adopt the obvious but stringent criter
that the tractions fromK fields dominate those from regula
fields atall points on a circular arc within the annulus. Un
fortunately, this is typically not possible. To explain furthe
the stress components that can act as tractions on a cir
arc withinRa ares r andt ru ~Fig. 17!. If the crack is under
symmetric loading, theK I stress field hass r50 at u56p
~see, eg, Tada et al@55#, p. 1.4b!. Thus, the magnitude of the
associated traction cannot dominate that of any regular fi
with s rÞ0 atu56p, and there are a number of such reg
lar fields for Mode I cracks~these stem from polynomia
solutions!. Alternatively, if the crack is under antisymmetr
loading, the K II stress field hass r5t ru50 at u5

62 sin211/) ~ibid!. Again there are regular fields whos
tractions are not dominated. Accordingly, whiles r and t ru

may act as controlling tractions withinRa , the criterion for
them to do so needs to be based on something other
their own values point by point throughoutRa .

To develop an alternative criterion, we take the princip
physical phenomenon we are trying to capture with o
K-controlled annulus interpretation for a crack to be brit
fracture on radial rays emanating from the crack tip. Phy
cally, brittle fracture is predominantly caused by tens
stresses. It follows that we can expect the hoop stress
radial rayssu to control this event. Of course, withinR0 this
stress component goes to infinity in traditional elastic tre
ments. However, withinRa it does not. Hence, in principle
we can check if the maximumsu for theK fields inRa is an
sy5
K2g

A2p xg
1o~1! as x→0~x>0! (3.18)

on y50, whereing is the singularity exponent andK2g its
associated stress intensity factor. In the event that the co
angleF tends to zero and the corner becomes a crack w
g51/2, we recover the first of Eqs.~3.1!. Other values of the
singularity exponent for other corners can be determined
ing Williams @20#. These values show thatg,1/2 for F
.0 ~eg, forF590°, g50.46).

Now we entertain a small crack-like extension of leng
da. We take this extension to be in the form of a mathem
cally sharp small crack when undeformed so that no mate
is removed. Its deformed shape is indicated in Fig. 16
the companion displacement assumes the same express
previously, namely as in Eq.~3.2!. Furthermore, using the
same energy argument as in Section 3.1 results in the s
expression for the energy release rate, namely Eq.~3.3!. On
introducing Eqs.~3.18! and Eq.~3.2! into Eq.~3.3!, and mak-
ing the change of variable as for~3.4!, we obtain

GI5
11k

4pm
K2gB~12g,3/2! lim

da→0
K Ida1/22g (3.19)

whereB is the beta function. What becomes apparent in
~3.19! is that the crack is a somewhat fortunate ‘‘corne
since it is the only one which has a finiteGI ~becauseg
51/2 andK IÞ0 asda→0). All other corners have zeroGI

~becauseg,1/2 andK I is bounded asda→0). This conclu-
sion can also be reached using any of the valid pa
independent integrals for the energy release rate mentio
in Section 3.1. Accordingly, we cannot use an energy rele
rate interpretation for reentrant corners withF.0. More-
over, energy release rate arguments break down in a sim
way for a wide variety of other singular configuration
Needed, therefore, is an alternative interpretation.

One alternative interpretation argues for aK-controlled
annulus. The essential elements of such an argument
given in Irwin @100#; a more extensive discussion is given
Rice @101# in the context of extending the applicability o
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order of magnitude greater than the maximumsu from any
regular fields. If this is the case, it would seem reasonabl
view theK fields as dominant.

The foregoing is but one fairly simple possibility for a
sessing the dominance ofK fields in the annulus; others ex
ist. For Mode I configurations, the resultingK-controlled an-
nulus interpretation is the same as accepting the en
release rateGI as controlling fracture. For mixed-mode situ
ations, it is essentially equivalent to the fracture criteri
proposed in Erdogan and Sih@102# and supported by som
experimental evidence therein. Thus while this choice is
unique, it does not appear unreasonable and it does
focus ensuing discussion. Moreover, it is not expected
other reasonable alternatives would significantly alter
conclusions drawn from this discussion.

One attribute of theK-controlled annulus interpretatio
that we have adopted is that it can be applied to singular
other than just those at a crack. Reconsider our earlier
ample of a reentrant corner under symmetric tensile load
~Fig. 16!. Even for a corner subtending an angle of 90°,
singularity is almost as strong as for a crack. Hence, if
K-controlled annulus argument is successful for a crack
can reasonably be expected to be capable of extensio
reentrant corners subtending angles up to 90° and subje
to tensile loading. For other singularities which are y
weaker, the dominance of the associated stresses is con
to a smaller neighborhood of the singular point, but so
may be the region wherein stresses are not physically ap
priate. Consequently, it would not seem unreasonable to
tertain the possibility of aK-controlled annulus for thes
situations as well.16

While successful in extending the range of singular c
figurations that can be interpreted over that with just ene
release rate arguments, there are some shortcomings i
K-controlled annulus approach for these other singularit
We demonstrate this next with some examples.

Returning to the special case of the 90° reentrant cor
typically mixed-mode loading can be expected in practi
That is, loading which is neither purely symmetric nor pure
antisymmetric about the bisector of the corner angle. Un
these circumstances, there are twodifferent typesof stress
singularities that can be present~as forF in Fig. 2d andP5

of Table 2!. Thus, in terms of the cylindrical polar coord
nates of Fig. 16,

su5
Ks

A2pr 0.46
1

Ka

A2pr 0.09
as r→0 (3.20)

on u50. In Eq.~3.20!, Ks andKa are the generalized stres
intensity factors associated with symmetric and antisymm
ric loading, respectively. Given the different orders of t
stress singularities associated withKs andKa in Eq. ~3.20!, it
is not clear that they share a common annulus. Further, e
if they do, we cannot always tell if one of the two fields
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dominant with respect to the other, or how to combine th
effects. This is so even if we continue to base our decisi
in this regard onsu in the annulus despitesu now having
distinctly different dependencies onr . The reason is that, if
Ka happens to be bigger thanKs , we cannot tell which has
the largersu without a knowledge of the radius of the a
whereon we are making the comparison. However, beca
we do not know the true physical stress field, we are
really able to specify the location of the annulus with th
arc. So here aK-controlled annulus interpretation does n
readily permit predictions of what happens under mixe
mode loading.

A further example of a potential shortcoming in th
K-controlled annulus approach is that of the epoxy-steel b
joint ~as for P7 of Table 2 and Fig. 2e!. Herein there is but
one stress intensity factor for both the normal stress and
shear on the interface. Hence, any fracture on the interfac
constrained by traditional elastic modeling to occur with
fixed ratio of tensile contribution to shear, irrespective of t
composition of the far-field loading. This sort of unrealist
limitation makes it unlikely that this singleK can be reliably
used to predict brittle fracture for widely differing loads.

On the other hand, for a single type of configuration, o
may be able to use stress intensity factors torank different
adhesives’ strengths. When the adhesives share a com
Poisson’s ratio and the adherend is relatively rigid, there
common singularity exponent and the value ofK at fracture
can be expected to reflect the relative strength of the ad
sives for the particular test configuration used. For ot
adhesive-adherend interfaces wherein the singularity ex
nents are not identical but are close to one another, it ma
possible to perturb elastic moduli so that the singularity
ponents become the same, and then rank adhesive stre
for the specific configuration of concern. However, when s
gularity exponents differ to the point that it is not judged
be reasonable to coalesce them via moduli modificatio
comparisons of adhesive strengths can be expected to be
consistent.

To explain further, suppose that, for a butt joint und
tension with a single adherend, glue 1 has a singularity
ponentg1 and a stress intensity factor at brittle fracture alo
the interface ofK1 , while glue 2 has a singularity exponen
g2 and a stress intensity factor at fracture ofK2 . Thus, ifs f

a

and s f
b are the normal stresses on the interface at frac

for glue 1 and 2, respectively,

s f
a5

K1

A2pr g1
1o~1!, s f

b5
K2

A2pr g2
1o~1!, as r→0

(3.21)

wherer is now the distance from where the interface me
the outside of the specimen (P7 in Fig. 2e!. Two different
situations can now be envisaged. First, we have the situa
where we can name the two glues so that

g1.g2 and K1.K2 (3.22)

Then the local stresses are uniformly higher for glue 1 an
is reasonable to conclude that glue 1 is probably stron
than glue 2 for the given butt joint in tension, and qu

rack
uli
utch-
16K-controlled annulus interpretations have also been advanced for the interface
~Rice @103#!. They particularly merit being considered when the perturbed mo
approach is not applicable. Such can be the case in anisotropic configurations; H
inson and Suo@104# reviews such instances.
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possibly so for like butt joints. Second, we have the situat
wherein, regardless of how we name the two glues, we h
a jumbled result as in

g1.g2 but K1,K2 (3.23)

or vice versa. Then the local stresses vary as to which g
has higher values and it is difficult to decide which is t
locally stronger glue just for the given butt joint, let alon
more generally. As with the earlier reentrant corner exam
we would need to know the actual location of a comm
K-controlled annulus to make a judgment, assuming a c
mon annulus exists.

As a final example of a shortcoming in theK-controlled
annulus approach, we consider a relatively rigid chisel
denting a block~as for P9 of Table 2 and Fig. 2g!. The
singularity coefficient, or generalizedK, in this instance de-
pends upon the angle of the chisel tip and the elastic mo
of the block. However, it is independent of the load appl
to the chisel. Accordingly, even if aK-controlled annulus
existed for such a configuration, theK involved could not be
used to estimate loads to fracture.

These examples illustrate the sort of difficulties that c
be encountered in employing the more generally applica
interpretation of aK-controlled annular region to stress si
gularities. They underscore that care needs to be exercis
order to appreciate the limitations of the approach and us
consistently.

The hypothetical nature ofK-controlled annulus argu
ments also bears comment. The basic hypothesis has th
one moves away from a singularity, the singular stresses
come physically applicable while they still dominate t
other stresses present. So what is ‘‘physically applicabl
Certainly the singular fields would seem to have to com
with all three of the underlying and unpoliced assumptions
linear elasticity to be assured of attaining this quality. This
not difficult to check in specific instances. For example,
the Griffith crack~Fig. 4 with b→0), compliance with the
assumptions of elasticity on the crack plane ahead of
crack tip is tantamount to insisting that the stresses there
at or below yield levels. Using coordinates as in Fig. 3,
normal stress on this plane is~see, eg, Tada et al@55#, pp
1.20, 5.1!,

sy

s0
5

x1a

Ax~x12a!
on y50 (3.24)

for x.0. Determining the locationxY when this stress equal
the yield stress gives

xY

a
5F12S s0

sY
D 2G21/2

21 (3.25)

The corresponding contribution of theK field, the singular
stresssy

s , is then given by~ibid, pp 1.3, 5.1!

sy
s

sY
5

s0

sY
A a

2xY
(3.26)

Provided far-field loading is maintained below 50% of t
yield stress, Eqs.~3.25! and ~3.26! have theK field as con-
on
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tributing 90% or more of the normal stress atxY . Conse-
quently, here we can readily find a location at which theK
field dominates while complying with the assumptio
within elasticity theory. Similarly, other configurations ca
and should be checked for such compliance.

Unfortunately, while complying with the underlying as
sumptions of elasticity may be a necessary requirement
the K fields to be physically applicable, it is generally not
sufficient one. This is because the physical discrepancy
tween the singular stresses and reality that must occur ne
singular point may result in the singular stresses continu
to deviate significantly from the true physical stresses e
when they are in accord with all three linearizing assum
tions. We demonstrate how this type of deviation can oc
in the simpler context of beam theory next.

To this end, we reconsider the earlier cantilever beam
ample taken from Frisch-Fay@34# ~Section 1.4!. This ex-
ample compares tip deflections from nonlinear and lin
beam theory, and demonstrates that linear theory is serio
in error. At the other end of the beam where it is built i
though, both theories give the same ‘‘deflection,’’ name
zero. Moreover, we can identify a length of the beam, sta
ing where it is built in, within which it is reasonable to re
gard linear theory as being in compliance with the assum
tion that recovers it from nonlinear theory. This assumpt
has

F11S dv
dxD

2G3/2

'1 (3.27)

where v is now the beam deflection andx the coordinate
along the beam’s length. Suppose now we adopt the v
that anything up to a 10% difference between the right-ha
and left-hand sides of Eq.~3.27! can be regarded as the tw
sides being in fair agreement. It follows that linear theory
in fair agreement with its underlying assumption if

dv
dx

<
1

4
(3.28)

Solving the linear beam problem, withx measured from the
built-in end and for the specifications of Frisch-Fay@34#, we
find Eq.~3.28! is met for 0<x<64 mm~2 1/2 inches!. Thus,
in this range linear beam theory can be regarded as confo
ing with its underlying assumption. However, also in th
range, linear beam theory has the bending moment as v
ing from 11.3 to 11.0 N-m~100 to 97.5 lbf-in!. In fact, non-
linear beam theory gives the bending moment as vary
from 5.0 to 4.7 N-m~44 to 41.5 lbf-in!. This is a discrepancy
of more than a factor of two. What is happening here is t
the physically inaccurate predictions of linear theory forx
.64 mm are continuing to pollute predictions whenx
,64 mm, even though linear theory is in fair agreement w
its underlying assumption in this range.

The same sort of pollution is a possibility for singul
stress fields. Not to say that it has to happen, just tha
might. Accordingly, we simply cannot know whether
K-controlled annulus really exists without knowing what t
true physical stress field is, something we typically do n
know. Consequently we need to resort to indirect means
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infer the existence or otherwise of aK-controlled annulus.
Arguably the best of these is to examine the physical acc
with predictions made viaK. We look to examine some
physical evidence in this light next.

3.4 How well doK interpretations work?

As remarked in Section 3.1, the two interpretations of str
singularities discussed here are mutually consistent inasm
as both identify stress intensity factors as the parameters
trolling brittle fracture. The energy release rate hypothe
does this for cracks; theK-controlled annulus for cracks an
other singularities. Too, both interpretations share an inte
tion of singular stresses. The energy release rate appr
does this directly as in Eqs.~3.3! and~3.6!; theK-controlled
annulus indirectly by, in effect, considering control on t
boundary of a region including the singularity. Hencefor
therefore, we refer to both as simplyK interpretations.17

By far the greatest practical application ofK interpreta-
tions is to configurations entailing cracks. The attend
technology is termed linear elastic fracture mechan
~LEFM!. Currently, LEFM plays a central role in attempts
try and ensure the structural reliability of components in
presence of cracks. Accordingly we focus our assessme
how well K interpretations work on their performance with
LEFM.

Linear elastic fracture mechanics leads the field of so
mechanics when it comes to explicitly recognizing the pr
ence of singularities and attempting to interpret them in
physically meaningful way. In implementing this activity,
has made considerable progress in the last 50 years. At
time, the analytical tools for determining stress intensity f
tors are well in hand. For most configurations, sufficien
accurate determinations of stress intensity factors for pra
cal purposes can be made either by drawing directly on c
pendia ofK ’s ~Tada et al@55#, Rooke and Cartwright@105#,
Sih @106#, and Murakami et al@107–109#!, or by applying
suitably-adapted numerical methods that have been de
oped. On the testing side, procedures have been well tho
out so as to limit plasticity effects and, thereby, enhance
applicability of LEFM. For fracture under monotonic load
ing, the design of these procedures was led by Srawley
Brown @110#. In essence,@110# takes advantage of the con
straint inhibiting plastic flow that is produced by increasi
thickness. This constraining effect enables restriction of
estimate of the yield region extent to being within abou
percent % of the crack length. This in turn allows applicati
of the approach to metals, and@110# is now the basis of a
standard for the determination of plane-strainfracture tough-
nessfor metallic materials,K Ic . That is, the test procedure t
be followed to ensure limited plasticity when obtainingK Ic ,
the critical value ofK I at which fracture commences for
given metallic material. This standard of the American So
ety for Testing and Materials, ASTM E399, has furth
evolved since Srawley and Brown@110# to the point that it is
this
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difficult to imagine any further significant refinements.18

Present-day testing practice that applies this standard is
typically reliable.

Evidence of the reproducibility achieved by testing lab
ratories in applying ASTM E399 is available in the resu
found from round-robin testing programs described in He
and McCabe@112#, McCabe@113#, and Underwood and Ken
dall @114# for bend specimens, compact tension specime
and C-shaped specimens, respectively. All told, 17 differ
laboratories took part in these programs. From these tes
sults, scatter can be estimated inK Ic determination.

In undertaking this assessment, we use results for a si
specimen type with a fixed nominal size and comprised
the same material. As a measure of scatter we take the
confidence limits of the normal distribution divided by th
mean and expressed as a percentage. That is,6100
(1.96sK Ic

/K̄ Ic), sK Ic
being the sample standard deviation

K Ic , andK̄ Ic being the mean value ofK Ic . We compute these
scatter measures using only results which have no repo
violations of ASTM E399 whatsoever. That is, results th
are free of any designation indicating concerns regard
compliance with the standard in Tables 3, 2, and 3 of He
and McCabe@112#, McCabe@113#, and Underwood and Ken
dall @114#, respectively. We then average the scatter meas
so found for the different materials tested with a given spe
men type to obtain an overall representative measure of s
ter for that particular type of specimen. Results are presen
in Table 3. Given the considerable demands placed on tes
by ASTM E399, the reproducibility ofK Ic evident in this
table is a tribute to the effort and care expended by the v
ous laboratories taking part.

In all, the implementation of aK interpretation for crack-
tip singularities is a credit to the fracture mechanics comm
nity. Hence, in considering how well suchK interpretations
work, the practice of them can generally be regarded as
ing well done and reliable.

As, arguably, the most basic means of assessing how
theK interpretation of LEFM works we can check the degr
to which fracture toughness is truly a material property. T
is, a property for a given material which remainsconstantfor
different configurations which are acceptable within the li
its of applicability of the theory. One way of doing this is t
consider values ofK Ic for the same material found by differ
ent laboratories over the years.

In undertaking this survey we draw upon compendia
sources of such data assembled in Hudson and Seward@115-
117#. Materials selected for inclusion in the survey are tho
with greater numbers of different sources furnishing resu
so as to gauge the presence of any variability better. To

Table 3. Scatter inK Ic testing

Specimen type Intralaboratory Interlaboratory

Bend 67% 611%
Compact tension 64% 6 7%
C-shaped 65% 610%
17It is also possible to regard Barenblatt’s approach as an ‘‘interpretation’’ of sing
stress fields, although it removes them. Viewed in this way, it too identifies K as
parameter controlling fracture.
lar
the
18A recent version of this standard may be found in ASTM@111#.
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Table 4. Variability in K Ic

Material Sample size Variability

Steels
4340:T1 14 650%
4340:T2 32 662%
4340:T3 39 641%
4340:T4 29 641%
Aluminum alloys
6061-T651 11 625%
7075-T6 35 651%
7079-T6 13 644%
Titanium alloys
Ti-6A1-4V:P1 23 639%
Ti-6A1-4V:P2 29 662%
Ti-6A1-4V:P3 21 649%
Ti-6A1-4V:P4 39 661%
Ti-6A1-4V:P5 17 643%
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Fig. 18 Size dependence of fracture toughness
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end, the following materials are chosen: four 4340 ste
distinguished by tempering temperatures~T1–T4!, three alu-
minum alloys, and five Ti-6A1-4V titanium alloys separat
by processing~P1–P5!. Details of the different tempering
temperatures and processing may be found in Hoysan
Sinclair @118#. Values ofK Ic are included only if contributors
claimed them to be in compliance with ASTM E399. Resu
are summarized in Table 4.

Results in Table 4 are drawn from over 50 different lab
ratories. When these testing laboratories repeated tests o
same material made with the same sized specimens o
same kind, just the average value is kept in the survey.
the other hand, if one laboratory tested different materials
the same material but with different types of specimens, t
companion fracture toughness results from that labora
are viewed as being independent and included as mul
values. The total number of independent measurement
K Ic for a given material is designated the sample size
Table 4. Also in Table 4, variability for a single material
represented as previously~ie, 6100 (1.96sK Ic

/K̄ Ic)).
Evident in Table 4 is that there is considerable variation

fracture toughness values. On average over all materials
sidered, the variability is647%, or a factor of 2.8 betwee
the lowest value and the highest. By way of comparison,
yield strength of the same materials varies on average
611%, or a factor of 1.2 between the lowest and the high

Clearly, one needs to exercise care in obtaining a re
sentative toughness for a particular material and using i
predict fracture in an attempt to guard against this even
the material is one in Table 4, then taking the low end of
spread should probably furnish a conservative estimate~cor-
responding actual numerical values can be found in@118#!. If
the material is not one in Table 4, and no information
readily available as to its distribution ofK Ic , then dividing
an isolated value by a factor of three should probably furn
a conservative estimate.

The foregoing raises the issue of the identity of the sou
of the substantial variations in fracture toughness reporte
Table 4, especially since these variations are significa
larger than the scatter indicated in Table 3. Current prac
for measuring fracture toughness applies predomina
bending loads to cracks in test pieces; for example, th
point-bend, compact, disk-shaped compact, and arc-sh
d
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specimens.19 Furthermore, test pieces are quite geometrica
similar, with cracks penetrating about half the widths
specimens and being about equal in extent to their th
nesses~see @111#!. Therefore, loading type and geometr
proportions can be expected to cause little of the fract
toughness variations reported in Table 4. In contrast, abso
size is not completely dictated in ASTM E399. Thus si
effects are possible sources of discrepancy in a mater
fracture toughness. We consider this possibility further ne

To assess whether size has any effect on fracture tou
ness, we need results from tests performed on a single
terial using a single type of specimen with size alone be
altered. Sinclair and Chambers@119# collects data of this
genre—specifics of the restrictions enforced to try to ens
testing varied solely as to size scale are described there

Focusing on plane-strain brittle response~yield region, if
any, of extent less than about 2% of the crack length!, Fig. 18
presents results from 43 different papers which together c
tain over 800 distinct tests. In the figure,K Ic

a is the fracture
toughness determined via the smaller specimen,K Ic

b via the
larger, with G being the scale factor between the two~the
inserted compact specimens with aG'2 are merely intended
to be illustrative!. While designated asK Ic to reflect being in
the plane-strain brittle regime, only about 30% of the fra
ture toughness values used in Fig. 4 are claimed by t
contributors to be valid in the sense of complying wi
ASTM E399. For some, being nonmetals, such complianc
not appropriate. For others, it is hard to tell complete
However, all were checked for compliance with the cent
restriction of ASTM E399, namely limited yielding. Furthe
separating those claimed as in accord with the standard f
the remainder did not reveal any major differences betw
the two sets of results in terms of the ratiosK Ic

a/K Ic
b for

different G.
For fracture toughness to be size independent, the r

K Ic
a/K Ic

b should be unity for all scale factorsG ~the solid line
in Fig. 18!. Evident in Fig. 18 are clear demonstrations

19While the compact specimen was formerly referred to as the compact tension s
men, this designation was simply to reflect the means by which loading is app
namely by pulling. The peak nominal stress ahead of the crack is largely ('90%) due
to bending rather than tension.
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fracture toughnessbeing size dependent. Given that the
range of variation ofK Ic

a/K Ic
b spans more than a factor o

four, such size dependence could be a source of at least s
of the variability found in fracture toughness.

One should not be that surprised that, even when frac
is appropriately brittle in nature, the fracture toughness o
given material can vary by about a factor of three, qu
possibly due to fracture toughness being size depend
Fracture toughness’ role as a material constant control
brittle fracture is the outcome of the hypothesis~or hypoth-
eses! that led to theK interpretation for singularities. Being
hypothetical, this role may or may not be fulfilled in practic
The physical evidence, in fact, shows that the hypothe
underlying LEFM are not complied with, or at least, n
closely so.

Nonetheless, LEFM can take credit for predicting tren
in the fracture of cracked components. By way of examp
we reconsider the data in Fig. 18. For the specimens
volved in generating this data, the stress intensity factors
in general be expressed by

K15s0Apa f~a/w! (3.29)

wheres0 is an applied stress,a continues as crack length
and f (a/w) is a function of geometry withw being some
other dimension of the specimen, such as the overall widt
the crack plane. At fracture, therefore, for two complete
scaled specimens,

K Ic
a5s f

aApa f~a/w!, K Ic
b5s f

bApGa f~Ga/Gw!
(3.30)

wherein the subscriptf is now put on the applied stresses
denote values at fracture. If fracture toughness is size in
pendent, Eqs.~3.30! have

K Ic
a/K Ic

b51, s f
a/s f

b5AG (3.31)

That is, the strength or stress at fracture decreases with
creasing size. If, on the other hand, the strength is size in
pendent, Eqs.~3.30! have

s f
b/s f

b51, K Ic
a/K Ic

b51/AG (3.32)

The dashed line in Fig. 18 plotsK Ic
1 /K Ic

2 of Eqs.~3.32!. Evi-
dent in Fig. 18 is that nearly all the data lie above this das
line. This means that nearly all the data comply with t
trendpredicted by fracture mechanics of decreasing stren
of cracked components with increasing size. Unfortunat
all the data do not agree well with theprecise reduction
predicted by fracture mechanics, that of Eqs.~3.31!. Typi-
cally, this is the case for other predictions of fracture m
chanics: Qualitatively they are correct, yet quantitative
there is room for considerable improvement.20

3.5 How well do other ‘‘interpretations’’ work?

Given the potential for greater predictive capability, it
natural at this point to seek alternatives toK interpretations
t
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of singular stresses. To this end, one could consider disp
ing with any 2D or 3D stress analysis and predicting failu
by merely comparingnominal net-section stressahead of
singularities with some suitable measure of material stren
Certainly this is a procedure which appeals in its ease
implementation. However, what Fig. 18 demonstrates is t
such an approach does not agree well with the physical d
This is because it predicts strength size independence.
is, it predicts Eqs.~3.32! and the dashed line in Fig. 18. Th
prediction is almost an outlier of the physically measur
responses. In contrast, at least fracture predictions based
K interpretation capture the trend in the data. This supe
predictive performance can be attributed, in part, to the f
that at least aK interpretation recognizes the presence o
stress concentration, albeit with a somewhat nonphys
measure. Nominal net-section stress does not. Since, in
ity, fracture can be expected to be significantly influenced
stress concentrations, this recognition realizes a signific
real advantage forK interpretations over ones made wi
nominal net-section stress. That said, there is no reaso
preclude the use of a fracture criterion based on nom
net-section stress in an adjunct role. Indeed, ifK ever failed
to predict brittle fracture when the nominal net-section str
exceeded the ultimate stress of a brittle material, a nom
net-section stress criterion should be enforced.

What about other alternatives that do attempt to recogn
the influence of stress concentrations in singular configu
tions? Over the years, a number of these have been wittin
or otherwise suggested, and they continue to be used to
All, in essence, draw on field quantities near but not at
singularity of concern to infer failure right at the singul
point. As a result they may be termednearby fracture crite-
ria.

In implementing nearby fracture criteria, two choic
need to be made: what to monitor as governing fracture,
where to monitor it. With respect to the first option, seve
possibilities have been entertained in the literature over
years. Among these are measures reflecting stresses
strains at the singularity. Stresses are usually used in ela
analyses and typically in complex configurations~eg, for
failure in composites as in Chamis@121#; and for biomedical
applications as in Valliappan, Kjellberg, and Svenss
@122#!. Strains are normally preferred when significant pla
tic flow accompanies fracture~eg, Belie and Reddy@123#,
Kim and Hsu@124#, and Chen@125#!. Other quantities em-
ployed are the crack opening displacement of Wells@126#
and the crack opening angle of Andersson@127#, the former
having gained sufficient acceptance to have a British S
dard@128# and an ASTM Test Procedure@129# to govern its
measurement.21 While the majority of these quantities se
lected in the role of governing fracture are for plastic r
sponse, given that elastic precedes plastic it is fair to ex
ine them all with respect to performance in the elas
regime.

All of the nearby fracture criteria concomitant with th
20The focus here of the assessment ofK interpretations is on monotonic loading rathe
than cyclic. This is because this is the simpler situation and accordingly where
could expectK interpretations to perform best. Some evidence that this is in fac
may be found in Sinclair and Pieri@120#.
r
one
so

21Crack opening displacement was independently introduced in Cottrell@130# to effect
a somewhat different objective, that of classifying brittle fracture—see Burdekin@131#
for a review of its role in fracture mechanics.
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above measures must make their comparisons at loca
which are removedfrom the actual singular point. This i
because the elastic stresses and strains at a singularit
infinite while, for the case of the tensile crack, the displa
ment and opening angle at the tip are fixed independen
load level~being zero andp, respectively!.

Indeed, this quality of being removed, even if only by
short distance, is a principal motivation for selecting t
foregoing quantities in the first place, namely having a qu
tity which is responsive to loading yet ‘‘measurable.’’ Su
measurement can be effected either via FEA or some o
analytical method for nearby stresses and strains, or eve
direct physical means for crack opening displacement
angle. Nevertheless, the decision to withdraw from the ac
singular point of concern should not imply a retreat from t
original objective of predicting failure at the singular poin
It is therefore a logic requirement of proposers/users
nearby fracture criteria to clearly identify what is their co
responding fracture criterionat the singularity. Despite infer-
ences in various papers to the contrary, the complexity of
configuration being considered does not obviate one fr
this responsibility.

Turning to a consideration of possible companion fract
criteria at the singularity, it is almost embarrassingly obvio
to make the following comments at the outset, but neces
nonetheless given suggestions made in the literature. It i
exercise in futility to attempt to use nearby quantities to in
elastic stresses and strains at the singularity because the
unbounded there. Thus their true infinite values are use
for comparison with any corresponding finite limiting one
The fact thatestimatesof stress and strain at a singularity ca
be finite reflects the limitations of the procedure used to
the estimation, not physics. One simply cannot rely up
errors in analysis to make a nonphysical field in a mo
physically appropriate. Ultimately, with a sufficiently acc
rate analysis, a large enough value of stress or strain a
singular point must result so as to exceed any finite co
sponding limit imposed, irrespective of load level. Su
comparisons are therefore meaningless. Moreover, the s
tion is not improved in any real sense by introducing plas
flow ~recall the discussion in Section 2.1!.

Given the need for a bounded quantity at the singular
and one which reflects load levels, there would not seem
be any significantly different alternative toK. In fact, K is
the explicit choice made in the elastic regime by crite
based upon crack opening displacement or angle. It follo
that nearby fracture criteria cannot be expected to realize
real improvement in predictive capability over that offer
by K interpretations.

Indeed, nearby fracture criteria can typically be expec
to be even less reliable. The reason for this is that attemp
to determineK from nearby quantities can be, in itself, a
unreliable undertaking. A demonstration of this possibility
given in Sinclair @132#. Therein, two artificial applications
are constructed which each have known closed-form s
tions. Thereafter, nearby stress, strain, and crack opening
placement and angle are used to inferK, with all specifics of
corresponding estimation procedures being set a priori.
ions
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four estimateKÞ0 whenK50 in the first application, and
all four find K50 whenKÞ0 in the second. Such dramat
cally erroneous determinations can be attributed to the m
chievous intent of the author of this article. Neverthele
they do indicate the potential of further discrepancies be
introduced by the use of nearby fracture criteria.

At this time then,K interpretations of elastic singularitie
represent the best available. Properly implemented, they
provide qualitative predictions to guide in designing f
structural integrity. Quantitatively, they may provide satisfa
tory predictions, but they cannot be relied upon to do so
general. Hence, ultimately, one can expect that most des
based onK interpretations are going to require specific a
rigorous testing.

4 ANALYZING STRESS SINGULARITIES

4.1 Asymptotic identification: Classical analysis

Asymptotic characterization of elastic singularities can
the stress analyst in two ways. In the first instance, it c
alert the analyst to the possibility of singular stresses
‘‘possibility’’ because whether or not local singular stre
fields in fact participate in a particular global configuratio
usually depends on the actual far-field loading in that glo
configuration. If this possibility is realized, it is essential f
it to be appreciated if any useful information whatsoever
to be gleaned from such a physically limited model.
present, the best use of such a stress analysis is viaK
interpretation. This requires a definition of an appropriateK,
which in turn requires the identification of the local singul
field present. This is the second way in which asympto
characterization can be of assistance.

Several methods are available for analytically undertak
the asymptotic analysis of stress singularities in elastic
One is the use of potentials together with separation of v
ables. This approach appeals in its directness. It was
used in Knein@28# to identify the singularity in a single
elastic configuration. Since, it has seen use in Willia
@20,133# and Kitover@134# to establish the eigenvalue equ
tions governing singularity exponents for a wide range
configurations. These equations are solved in Willia
@20,133# so as to explicitly identify possible stress singula
ties.

Alternatively, complex variables may be introduced
yield an approach which is compact in its representatio
This method of analysis was first employed in Huth@135# to
treat the same class of problems as in Williams@20#, then
shown in Williams@136# to lead to the same results as th
earlier separation of variables.

These two methods were applied to elastic configurati
having locally homogeneous boundary conditions. When
cal boundary conditions are inhomogeneous, transfo
methods are natural to consider. Brahtz@27# does this for an
angular plate comprised of a single elastic material, wh
Bogy @137#, following Tranter@138#, uses the Mellin trans-
form for a bimaterial plate, and the Mellin transform h
seen extensive use since. It is, though, quite possible to
plore the effects of inhomogeneous conditions using
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original separation-of-variables method or complex va
ables. Essentially, all three methods enable the same id
fication of possible stress singularities to be made. T
choice of which one to use is really a matter of perso
preference for the analyst undertaking the asymptotics:
choose separation of variables here and describe its b
elements next.

By way of a simple illustration, we reconsider the elas
plate with a stress-free reentrant corner, or notch, and
jected to tensile loading~Fig. 16!. The symmetry of the con
figuration enables attention to be confined to the upper
of the plate which, in terms of the polar coordinatesr andu
of Fig. 16, is contained in 0,u,f/2. Heref is the entire
angle subtended at the corner within the plate (0,f
<2p). What we seek is the local character of the stres
s r , su , andt ru , and displacementsur anduu in the corner
of the plate~viz, as r→0). These fields are to satisfy th
equations of elasticity together with the following tradition
boundary conditions: the stress-free conditions on the p
edge,

su5t ru50 on u5f/2 (4.1)

for 0,r ,`; and the symmetry conditions ahead of t
notch,

uu50, t ru50, on u50 (4.2)

for 0,r ,`.
To construct appropriate forms for the solutions to t

field equations of elasticity for complying with the cond
tions Eqs.~4.1! and ~4.2!, we follow Williams @20# and let
the stresses be generated by an Airy stress functionx in
accordance with

s r5
1

r

]x

]r
1

1

r 2

]2x

]u2

su5
]2x

]r 2 , t ru52
]

]r S 1

r

]x

]u D . (4.3)

Such stresses satisfy the equilibrium requirements: Prov
x is biharmonic, they are also compatible so that compan
displacements exist. These may be determined with the
of an auxiliary harmonic function which is given in Sectio
2.45, Coker and Filon@139# ~see also Williams@20#!.

The determination of a biharmonicx for Eqs.~4.3! can be
further reduced to the determination of two harmonic fun
tions C andĈ, sincex admits to being represented by

x5C1r 2Ĉ (4.4)

Separation of variables directly furnishes a candidateC as

C5r l11@c1 cos~l11!u1c2 sin~l11!u# (4.5)

whereinl, c1 , andc2 are constants~the choice ofl11 as
an exponent rather than justl follows Williams @20#, and
results in somewhat simpler equations forl later!. In select-
ing Ĉ, it is essential that the resultingx involve a single
power ofr . This is so that each of the boundary conditions
Eqs. ~4.1! and ~4.2! holding for 0,r ,` leads to but one
condition on the constants inC and Ĉ. Then we have a
ri-
nti-
he
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chance of complying with these boundary conditions by v
tue of having four constants—two each forC and Ĉ—for
four equations. Accordingly we take

Ĉ5r l21@c3 cos~l21!u1c4 sin~l21!u# (4.6)

wherec3 andc4 are the further constants. Hence, substitut
Eqs. ~4.5! and ~4.6! into Eq. ~4.4! realizes ax with four
constants sharing a commonr l11 multiplier. Processing this
Airy stress function, using Eqs.~4.3! and the Coker and
Filon relations, furnishes corresponding stresses and
placements. Thus we have, as ourbasic separable fields,

s r52lr l21@c1 cos~l11!u1c2 sin~l11!u

1~l23!~c3 cos~l21!u1c4 sin~l21!u!#

su5lr l21@c1 cos~l11!u1c2 sin~l11!u

1~l11!~c3 cos~l21!u1c4 sin~l21!u!#

t ru5lr l21@c1 sin~l11!u2c2 cos~l11!u

1~l21!~c3 sin~l21!u2c4 cos~l21!u!# (4.7)

ur5
2r l

2m
@c1 cos~l11!u1c2 sin~l11!u

1~l2k!~c3 cos~l21!u1c4 sin~l21!u!#

uu5
r l

2m
@c1 sin~l11!u2c2 cos~l11!u

1~l1k!~c3 sin~l21!u2c4 cos~l21!u!#

In Eqs.~4.7!, c1 andc2 of Eq. ~4.5! have been exchanged fo
c1 /(l11) andc2 /(l11) so as to slightly simplify expres
sions, andm continues as the shear modulus,k as the func-
tion of Poisson’s ratio given in Eq.~1.3! et seq.

Now applying the symmetry conditions Eqs.~4.2! gives

c25c450 (4.8)

Applying the outstanding stress-free conditions Eqs.~4.1! to
the remaining terms then yields the 232 system of equations

r l21Ac50

A5S l cos~l11!f/2 l~l11!cos~l21!f/2

l sin~l11!f/2 l~l21!sin~l21!f/2D
c5S c1

c3
D (4.9)

for 0,r ,`. For this homogeneous system of equations
have a nontrivial solution, the determinant of the coefficie
matrix must be zero. That is

D50 (4.10)

whereD is the determinant ofA. Hence we obtain theeigen-
value equationfor our example as

l2~sinlf1l sinf!50 (4.11)
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The eigenvalue Eq.~4.11! is for the eigenvalues, or charac
teristic values, of the boundary value problem described
Eqs.~4.1!, ~4.2!, and surrounding text.

Given ther -dependence of the stresses in Eqs.~4.7!, if we
focus on integrable singular stresseswe can confine our
search for roots of Eq.~4.11! to the range

0,l<1 (4.12)

Within this range, a root for each of two special cases
immediate:

l51/2 for f52p

l51 for f5p (4.13)

The first of these gives the familiar inverse-square-root s
gularity of a tensile crack or a flat lubricated rigid punch
a half-space~see Table 2, pointsP2 and P3). For p,f
,2p, there is one real root forl satisfying Eq.~4.11!: For
0,f,p, there are no real roots. Actual values ofl for f in
the first of these ranges need to be found numerically.
sults so obtained can be fairly readily fitted to within 0.5
by

l50.512.425f̂316.3f̂5

f̂512
f

2p
, p<f<2p (4.14)

The fit of ~4.14! recovers thel’s of Eqs.~4.13! and connects
the two for otherf.

For anyf.p, the associated singulareigenfunctioncan
be assembled as follows. First, substitute the correspon
eigenvalue,l from Eqs.~4.14!, into the fields of Eqs.~4.7!.
Next, setc25c450 therein in accordance with Eqs.~4.8!.
Last, determine the relationship betweenc1 andc3 from Eqs.
~4.1! whenl equals the eigenvalue, and substitute this re
tionship into the fields. By way of example, for the spec
case of a crack (f5p), these steps givel51/2 and c3

52c1 . Then, on exchangingc1 for K I/2A2p so as to recover
the stress intensity factor, the stresses from Eqs.~4.7! are:

H s r

su
J 5

K I

4A2pr
F H5

3J cos
u

2 H 2

1J cos
3u

2 G

t ru5
K I

4A2pr
Fsin

u

2
1sin

3u

2 G (4.15)

Displacements follow similarly from Eqs.~4.7!. The stress
field of Eqs.~4.15! is one form of the now classical, Mode
singular eigenfunction for crack-tip stresses, originally ide
tified in Williams @140# and Irwin @84#.

Another form of stress singularity can be directly iden
fied via the same approach. This type of singularity ste
from complex roots to the eigenvalue equation, a possib
appreciated in Williams@20,133#, and further amplified in
-
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Williams @21#. For our illustrative example, the eigenvalu
Eq. ~4.11! is simply comprised of algebraic and trigonome
ric functions ofl. For other configurations, this essential
remains the case. Thus, since these functions are symm
in the complex domain, complex eigenvalues occur as co
plex conjugates. That is, as

l5j6 ih (4.16)

with 0,j<1 as the counterpart of Eq.~4.12!. For such com-
plex eigenvalues, the definition of equality in the compl
domain assures that the real and imaginary parts of ass
ated eigenfunctionsare each individually eigenfunctions i
themselves. For example, thec1 contribution tos r of Eqs.
~4.7!, whenl is as in Eq.~4.16!, becomes the two expres
sions

s r52c1r j21@cos~j11!u coshhu~j cos~h ln r !

2h sin~h ln r !!1sin~j11!u sinhhu~j sin~h ln r !

1h cos~h ln r !!#

s r52c18r
j21@cos~j11!u coshhu~j sin~h ln r !

1h cos~h ln r !!2sin~j11!u sinhhu~j cos~h ln r !

2h sin~h ln r !!# (4.17)

wherec18 is generally a distinct constant fromc1 . Evident in
Eqs. ~4.17! is the oscillatory nature that accompanies co
plex eigenvalues.

Returning to our illustrative example, the determination
eigenvalues of the form Eq.~4.16! proceeds routinely on
separating the eigenvalue Eq.~4.11! into real and imaginary
parts. Forp,f,2p, given 0,j<1, graphical arguments
can then be used to establish that there are no complex r
There are complex eigenvalues whenj.1, though these do
not give rise to singular stresses. There do exist other c
figurations, though, for which complex eigenvalues do g
rise to singular stresses. Examples include the interface c
and the adhering rigid indentor~as for pointsP2 and P3 in
Table 2 and Fig. 2a andb!.

The foregoing analysis can be applied to other bound
conditions for in-plane loading, as well as to out-of-pla
shear, bending within classical theory, and to composite v
sions of all of these configurations. However, there are so
further stress singularities and different types of bound
conditions for which it is not immediately applicable. W
look to its adaptation to accommodate these situations n

4.2 Asymptotic identification: Further developments

An additional form of stress singularity results from ente
taining logarithmic character. To investigate this possibili
we need to augment the fields of Eqs.~4.7! with ones con-
taining lnr. To this end, observe that Eqs.~4.7! satisfy the
plane field equations of elasticity for anyl. In fact, these
fields are continuously differentiable functions ofl. Hence,
because theirr -dependence is of the formr l215e(l21)ln r,
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they can be differentiated with respect tol to generate the
sought-after fields containing lnr. This is the approach
adopted in Dempsey and Sinclair@29#. For the basic fields of
Eqs.~4.7! it leads to, as ourauxiliary fields,

s r52r l21@~11l ln r !~c1 cos~l11!u1c2 sin~l11!u!

1~2l231l~l23!ln r !~c3 cos~l21!u

1c4 sin~l21!u!2lu~c1 sin~l11!u2c2 cos~l11!u

1~l23!~c3 sin~l21!u2c4 cos~l21!u!!#

su5r l21@~11l ln r !~c1 cos~l11!u1c2 sin~l11!u!

1~2l111l~l11!ln r !~c3 cos~l21!u

1c4 sin~l21!u!2lu~c1 sin~l11!u2c2 cos~l11!u

1~l11!~c3 sin~l21!u2c4 cos~l21!u!!#

t ru5r l21@~11l ln r !~c1 sin~l11!u2c2 cos~l11!u!

1~2l211l~l21!ln r !~c3 sin~l21!u

2c4 cos~l21!u!1lu~c1 cos~l11!u1c2 sin~l11!

3u1~l21!~c3 cos~l21!u1c4 sin~l21!u!!#

(4.18)

ur5
2r l

2m
@~c1 cos~l11!u1c2 sin~l11!u!ln r

1~11~l2k!ln r !~c3 cos~l21!u1c4 sin~l21!u!

2u~c1 sin~l11!u2c2 cos~l11!u

1~l2k!~c3 sin~l21!u2c4 cos~l21!u!!#

uu5
r l

2m
@~c1 sin~l11!u2c2 cos~l11!u!ln r

1~11~l1k!ln r !~c3 sin~l21!u2c4 cos~l21!u!

1u~c1 cos~l11!u1c2 sin~l11!u

1~l1k!~c3 cos~l21!u1c4 sin~l21!u!!#

Together, the stresses and displacements of Eqs.~4.18! con-
tinue to satisfy the field equations of elasticity because th
equations are independent ofl ~that such is the case may b
verified by direct substitution!. What now becomes appare
is that the stresses of Eqs.~4.18! can also be singular whe
l51, the upper limit admitted in Eqs.~4.12!, since then they
can go to infinity as lnr whenr→0. Forl.1, though, they
remain bounded whenr→0.22

The fields found vial-differentiation can be supple
mented by the originating fields of Eqs.~4.7!. When com-
bined in this way, the constants need no longer be the s
so we now distinguish the constants in Eqs.~4.7! asc8. In-
troducing the combination into the boundary conditions
our example, the earlier system Eq.~4.9! now involves dif-
ferent functions ofr , with
h

ese
e
t

me

in

r l21 ln rAc1r l21F]A

]l
c1Ac8G50 (4.19)

for 0,r ,`. In Eq. ~4.19!, ]A/]l is the matrix with ele-
ments obtained by differentiating all corresponding eleme
of A of Eqs. ~4.9! with respect tol. For our example, Eq.
~4.19! is a 232 system. In general, it can be annA3nA

system,nA being the order ofA. In either case, the first term
in Eq. ~4.19! recovers our original determinant condition, E
~4.10!, for a nontrivial c. The second term requires som
analysis to establish the necessary conditions for maintain
a nontrivial c—essentially these conditions result from e
suring a consistent or solvable system forc8.

Under Eq.~4.10!, D50 and the rank ofA must be less
than its ordernA . If the rank ofA is nA21, then necessary
conditions for a nontrivialc are

D5
]D

]l
50 (4.20)

That is, the eigenvalue is a repeated root. Equations~4.20!
are effectively the conditions that are noted to hold for a p
logarithmic singularity (l51) with inhomogeneous bound
ary conditions in Bogy@141#: sansD50, Eqs.~4.20! for l
51 are stated as the condition for a pure log singula
under homogeneous boundary conditions in Bogy and W
@142#. Equations~4.20! are shown to be necessary forcÞ0
for 0,l<1 under homogeneous boundary conditions, a
when the rankr A5nA21, in Dempsey and Sinclair@29#.

If, instead, the rankr A is further reduced tonA22, nA

23,.., the conditions in Eqs.~4.20! are not enough. Unde
these circumstances, necessary conditions for a nontrivc
are

D5
]D

]l
5

]2D

]l2 5••

]nA2r AD

]lnA2r A
50 (4.21)

This result is established in Appendix 1,@29#, for either pure
logarithmic singularities (l51), or logarithmic intensifica-
tion of power singularities (l,1, see Eqs.~4.18!!: It in-
cludes the previous result Eqs.~4.20!. We note, however, tha
cÞ0 and the existence of local fields of the form of Eq
~4.18! does not necessarily mean local logarithmic terms
is possible for a nontrivialc to exist yet the coefficient of lnr
terms be zero. This occurs forl51,c15c25c350, andc4

Þ0—see Eqs.~4.18!.
Returning to our illustrative example, there are no

peated roots to Eq.~4.11! within the range of Eq.~4.12!.
Therefore, there is no logarithmic character in the singu
stresses because Eqs.~4.20! are necessary condition for th
same. On the other hand, if instead of confining attention
symmetric loading in our reentrant corner example we h
admitted antisymmetric as well, we would have had a
peated root for the case of a crack~viz, for f52p and l
51/2 with a multiplicity of 2!. Accordingly Eqs. ~4.20!
would have been satisfied. Nonetheless, there is no loga
mic intensification of the singularity in this instance. This
because the rank of the now 434 coefficient matrix drops to
two for l51/2, and Eqs.~4.20! are not sufficient under suc
circumstances. Furthermore, Eqs.~4.21! are not satisfied so

ry
22One might be inclined to try to employ the classical Michell solution for auxilia
fields since it does contain log terms. However, in its usual form~eg, Art 43, Timosh-
enko and Goodier@16#!, this solution does not contain all the terms in Eqs.~4.18!.
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that no logarithmic intensification results. There are, thou
other instances in which Eqs.~4.21! are satisfied and loga
rithmic singular character is possible: Quite a number
these are identified in Part II of this review.

In summary, then, thesingular stresses that are possib
with homogeneous boundary conditionsfollow as below, in
what might reasonably be regarded as order of decrea
singular character. For any stress components, asr→0,

s5O~r j21 cos~h ln r !!1O~r j21 sin~h ln r !!

when D50 for complex l5j1 ih~0,j,1!

s5O~r l21 ln r !1O~r l21! when D50,
]nD

]ln 50

for n51,..,nA2r A and real l~0,l,1!

s5O~r l21! when D50 for real l~0,l,1! (4.22)

s5O~ ln r ! when D50,
]nD

]ln 50,

for n51,..,nA2r A and l51,

with c1
21c2

21c3
2Þ0

in the auxiliary stress field of Eqs.~4.18!

s5O ~cos~h ln r !!1O~sin~h ln r !!

when D50 for complex l511 ih

Herein,D is the determinant of the coefficient matrixA re-
sulting from applying boundary conditions,nA is the order of
this matrix, andr A its rank whenl is an eigenvalue. For the
single material plate in extension, at mostnA54. For bima-
terial plates, both boundary and interface conditions are
volved in assemblingA: Then typicallynA58. And so on.

In the last of Eqs.~4.22! we have included, as a type o
‘‘singularity,’’ stresses which in fact are bounded forr 50.
These same stresses, though, are undefined forr→0. Conse-
quently, to a degree, they share with actual singular stre
the futility of trying to use them directly in stress-streng
comparisons atr 50.

In addition to the types of singularity in Eqs.~4.22!, it is
theoretically possible to have a combination of the first t
types in Eqs.~4.22! whenl is a complex root of the appro
priate multiplicity,nA2r A . The actual occurrence of this la
sort of singularity with homogeneous boundary conditions
yet to be noted in the literature. It is also theoretically po
sible to have log-squared singularities. Again, the actual
currence of this last sort of singularity with homogeneo
boundary conditions is yet to be noted in the literature. It c
occur, however, with inhomogeneous boundary condition

For inhomogeneous boundary conditions, any respo
can include that for the corresponding homogeneous co
tions. Further, stress singularities typically stem from the
mogeneous boundary conditions, especially if we require
applied inhomogeneous conditions to be sufficiently conti
ous. Even so, for some inhomogeneous boundary conditi
logarithmic singularities can be induced. We illustrate how
treat this sort of response by reconsidering our symme
notch example.
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Suppose in this example, the stress-free conditions of E
~4.1! are replaced with conditions applying a uniform she
tractionq. That is, with

su50, t ru5q, on u5f/2 (4.23)

for 0,r ,`. Now introducing into Eqs.~4.23! the symmet-
ric part of the basic stress field, Eqs.~4.7! with Eqs. ~4.8!,
yields the 232 system

r l21 Ac5q (4.24)

for 0,r ,`. Here A and c are as in Eqs.~4.9!, and the
vectorq is given byq5(0,q). For Eqs.~4.24! to hold for all
r , we
set l51. Then solving forc yields c15q cscf and c3

52(q/2)cotf. Hence, for example, the shear stress is

t ru5q
sin 2u

sinf
(4.25)

for 0<u<f/2. Clearlyt ru of Eqs.~4.25! complies with the
shear boundary condition in Eqs.~4.23!. However, what is
also clear is that there is a problem with the solution if t
vertex angle is such that sinf50. That is, if f5p, 2p.
Thent ru is everywhere infinitethroughout the plate. Further
more, the other stresses and even the displacements in
solution are everywhere infinite. This sort of ‘‘singularity’’ i
no longer trying to reflect a physical stress concentration
the plate vertex. Rather, it represents a total breakdown in
solution procedure adopted, something which must be re
fied before any physical interpretation is attempted.

The reason for the breakdown is that the fields used
arrive at Eqs.~4.25! are incomplete. To overcome this shor
coming we follow Dempsey@143# and supplement them with
those of Eqs.~4.18! with Eqs.~4.8! applied. If we continue to
usec8 to distinguish the constants in the original stress fie
our system for solution becomes

r l21 ln r Ac1r l21S ]A

]l
c1Ac8D5q (4.26)

for 0,r ,`. We setl51 again so that the second term o
the left-hand side of Eq.~4.26! becomes independent ofr
like the right-hand side. Now, though, we still have a syst
which depends onr by virtue of the lnr term. The vector
coefficient of this lnr term must therefore be zero. For th
problem vertex angles,f5p and 2p, this can be arranged
This is because the determinant ofA is zero for these angle
whenl51 ~see Eqs.~4.9!!: Indeed, in some sense it is th
determinant ofA being zero that causes the problem w
these angles in the first place by prohibiting a solution to E
~4.24!. Consequently, we merely need to makec a solution of
Ac50 for D50. Then it in concert withc8 enables a solution
of Eq. ~4.26!. For example, forf5p, a solution isc1

52c3524c38522q/p,c1850. The corresponding shea
stress becomes

t ru5
22q

p
@~11 ln r !sin 2u1u cos 2u# (4.27)

for 0<u<p/2. Clearlyt ru of Eq. ~4.27! complies with the
shear boundary condition in Eqs.~4.23!. Clearly, also,t ru of
Eq. ~4.27! is logarithmically singular at the plate vertex
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Given symmetry for our plate of vertex anglep, it realizes a
half-space with a jump in surface shear traction from2q to
q. Accordingly, the log singularity present is akin to that
P8 of Table 2 and Fig. 2f. This sort of singularity is admis
sible in elasticity and does reflect the physical stress con
tration that occurs at a step discontinuity in shear tractio

While the analysis leading to Eq.~4.27! and like expres-
sions for the other stresses does solve the plate loaded
uniform shear whenf5p, it does not provide a reasonab
transition from stresses like that of Eq.~4.25! as f passes
throughp. In fact, from Eq.~4.25! it would appear that, for
f near but not equal top, t ru can be made arbitrarily large

To furnish a more sensible transition, Ting@144# supple-
ments the solution of Eq.~4.25! with its homogeneous coun
terpart ~ie, the stresses forq50). This leaves compliance
with Eqs.~4.23! unaltered. By suitably adjusting the partic
pation of these additional stresses, a reasonable trans
from t ru of Eq. ~4.25! through t ru of Eq. ~4.27! can be
effected asf passes throughp. Such transitions are obtaine
for the other stresses and for further configurations in T
@144#. Since they recover results found via Eqs.~4.18!, the
approach in Ting@144# can be used just by itself.

Either via Dempsey@143# plus Ting@144#, or just by Ting
@144#, a number of configurations that would otherwise ha
breakdowns in their analysis can be treated. Typically,
leads to logarithmic stress singularities when constant t
tions are applied; ‘‘typically’’ because occasionally syste
like Eq. ~4.24! with D50 are still consistent because th
augmented matrix also drops in rank. Analogous results h
for linear displacements.23

Observe that, for these log singularities withinhomoge-
neousboundary conditions, the requirements in the last
Eqs. ~4.22! do not apply. All that is required isD50 when
l51. Indeed, ifD has a repeated root atl51, further fields
other than just those of Eqs.~4.18! are typically needed
These fields stem from further differentiation with respect
l. As noted in Dempsey and Sinclair@29#, this leads to ln2 r
terms. For the auxiliary field of Eqs.~4.18!, it gives thefur-
ther auxiliary stress field

s r52r l21@~l ln2 r 12 ln r 2lu2!~ ĉ1 cos~l11!u

1 ĉ2 sin~l11!u1~l23!~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!!22u~11l ln r !~ ĉ1 sin~l11!u

2 ĉ2 cos~l11!u1~l23!~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!!12~11l ln r !~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!22lu~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!#

su5r l21@~l ln2 r 12 ln r 2lu2!~ ĉ1 cos~l11!u

1 ĉ2 sin~l11!u1~l11!~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!!22u~11l ln r !~ ĉ1 sin~l11!u
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2 ĉ2 cos~l11!u1~l11!~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!!12~11l ln r !~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!22lu~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!# (4.28)

t ru5r l21@~l ln2 r 12 ln r 2lu2!~ ĉ1 sin~l11!u

2 ĉ2 cos~l11!u1~l21!~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!!12u~11l ln r !~ ĉ1 cos~l11!u

1 ĉ2 sin~l11!u1~l21!~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!!12~11l ln r !~ ĉ3 sin~l21!u

2 ĉ4 cos~l21!u!12lu~ ĉ3 cos~l21!u

1 ĉ4 sin~l21!u!#

whereinĉi and i 51, 2, 3, 4, are further constants. Similarl
expressions can be obtained for displacements. With E
~4.28!, log-squared stress singularities may be possi
‘‘May’’ because there are constants for this additional str
field which remove all ln2 r terms whenl51, yet do not
remove the field in its entirety. These constants areĉ15 ĉ2

5 ĉ350, ĉ4Þ0 in Eqs.~4.28!.
In summary, then, thesingular stresses that can be po

sible with uniform tractions/linear displacements applie
follow as below, in order of decreasing singular characte24

For any stress components, asr→0,

s5ord~ ln2 r !1ord~ ln r ! when D50,
]nD

]ln 50,

for n51,..,nA2r A, ĉ1
21 ĉ2

21 ĉ3
2Þ0

in the further auxiliary field of~4.28!

s5ord~ ln r ! when D50,
]nD

]ln 50,

for n51,..,nA2r A, ĉ15 ĉ25 ĉ350 (4.29)

in the auxiliary field of Eqs.~4.28!

s5ord~ ln r ! when D50,
]nD

]ln Þ0,

for n5nA2r A, c1
21c2

21c3
2Þ0

in the auxiliary stress field of Eqs.~4.18!

provided throughout~4.29!

l51, r AÞr A8 (4.30)

wherer A8 is the rank of the augmented matrix formed byA
and the forcing vector attending the inhomogeneous bou
ary conditions. The conditions in Eqs.~4.29! and ~4.30! can
be inferred from Dempsey and Sinclair@29# and Dempsey

e Ting

24Some singularities possible with other inhomogeneous boundary conditions for p
in extension are discussed in Part II. In large part, these are self evident. Singula
can also be induced with other inhomogeneous boundary conditions for plates u
bending: These are also discussed in Part II.
23There are other singular configurations wherein supplementary fields like Eqs.~4.18!
are needed to make the analysis complete. These involve concentrated loads. Se
@145# for a review.
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@143#. When Eqs.~4.29! and ~4.30!, or their analogues for
other configurations, are satisfied, log singularities do res
Examples are given in Part II of this review. When the
singularities occur, their participation is controlled by t
local applied loading rather than far-field conditions. Wh
such local loading is nonzero, they must occur. Hence,
use of the ord notation in Eqs.~4.29!. As noted earlier, these
singularities can occur in concert with the singularities
corresponding homogeneous boundary conditions.

There is an additional type of boundary condition whi
requires further consideration. These are conditions wh
while homogeneous in themselves, promote equations w
are not homogeneous in theirr -dependence when the field
of Eqs.~4.7! are introduced into them. For example, suppo
normal cohesive stresses are applied ahead of the notc
our reentrant corner configuration of Fig. 16. Thus,

su5keuu on u50 (4.31)

for 0,r ,` is exchanged for the first of Eqs.~4.2!, whereke

continues as the cohesive law stiffness. Substituting E
~4.7! into Eqs.~4.31! then gives

lr l21@c11~l11! c3#1
ker

l

2m
@c21~l1k! c4#50

(4.32)

for 0,r ,`. Since~4.32! holds for all r and now involves
two distinct powers ofr , it is effectively two boundary con-
ditions. Taken together with the stress-free conditions of E
~4.1! and the zero-shear condition of Eqs.~4.2!, Eq. ~4.32!
realizes five equations in the but four unknowns,c1–c4 .
These equations cannot be made consistent for anylÞ0.
Therefore, no nontrivial solution exists which is simply
the form of Eqs.~4.7!.

To overcome this difficulty, we form fields as series
replacingl of Eqs. ~4.7! by ln5l1n, with corresponding
constants obtained on extendingci ( i 51,2,3,4) toci 1n , then
summing onn. This series approach is the one adopted
Sinclair @146# to handle heat conduction problems with co
vective cooling: It is also the one used in Ting@147# to
handle elastic plates with curved boundaries. With series
the fields, the cohesive condition of Eq.~4.31! becomes

suu
l05l

1 (
n51

`

[suu
ln5l1n

2keuuu ] 5
ln5l1n21

0 (4.33)

for 0,r ,`. The order of the terms in Eq.~4.33! is

O~r l21!1 (
n51

`

O~r l1n21!50 as r→0 (4.34)

The lowest order terms in Eq.~4.34! areO(r l21): Setting to
zero the determinant of the coefficient matrix for these ter
enables one to determine an eigenvaluel, and corresponding
eigenfunction constantsci ( i 5124). For this eigenvalue
the next terms areO(r l) and serve to relatec5–c8 to c1–c4 ,
and the terms thereafter relatec9–c12 to c5–c8 , whence
c1–c4 , and so forth~see Sinclair@67# for details!. Thus, each
complete eigenfunction itself becomes a series~which can be
ult.
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shown to converge forr ,1). There is one such series fo
each eigenvalue. Hence, for a series of eigenvalues, we
a series of series for eigenfunctions.

The preceding means of constructing asymptotic fie
has, as a direct consequence, that the part of the cohesive
that is active in determining eigenvalues is the stress~see
Eqs. ~4.7!, ~4.33!, and ~4.34!!. That is, cohesive laws hav
exactly the same effect on singular character as setting
stress contained within them to zero. Similar outcomes h
for other boundary conditions which, on a first analysis, g
rise to equations that are inhomogeneous inr . An example is
the out-of-plane bending of plates within the context
sixth-order theory.

The foregoing summarizes some of the analytical to
that can be fairly readily applied to asymptotic singu
analysis within classical elasticity. As mentioned earlier,
ternatives exist. Faced with a specific problem, the str
analyst could entertain using any of these approache
check for the possibility of singular stresses. It is proba
easier, though, to try to draw on the literature for a pertin
analysis. To assist in this activity, there already exist so
reviews: for cracks, those in Atkinson@148# and Hwang, Yu,
and Yang@149#; for some bimaterial plates, that in Murakam
@150#. For other configurations, hopefully Part II of th
present review can help. In the event that no such anal
can readily be found, one could perform the necessary
ymptotics oneself. Ultimately, this may be necessary for
terpretation. However, it may be more efficient at the out
to carry out a global analysis. This is because, while it is
likely it is nonetheless possible that any associated st
singularities do not actually participate in the problem
hand if it involves local homogeneous bounda
conditions.25 Under these circumstances, singularities do
have to be asymptotically identified, and just a global ana
sis suffices. We turn our attention to this activity next.

4.3 Numerical analysis: Detection of singularities

In order to detect the actual presence of a stress singulari
a configuration being numerically analyzed, we need to
sign a sequence of successively refined analyses which
reasonably be relied on to produce diverging maxim
stresses, thereby revealing the singularity. The most c
lenging singularities to unearth in this way can be expec
to be the weakest, namely log singularities. Hence, we fo
attention on this type of singularity initially.

To develop a scheme for detecting logarithmic dive
gence, we follow Sinclair@151# and consider an analog
with the numerical summation of series. For a series w
individual memberssn , we form the partial sumSn̂ in accor-
dance with

Sn̂5 (
n51

n̂

sn (4.35)

25‘‘Not likely’’ because usually the eigenfunctions remaining once the singular on
removed have zero stresses at the singular point, and are therefore unable to rep
nonzero stresses there.
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For such partial sums, it is sometimes implied in texts
numerical analysis that convergence can be examined
considering the sequence

Sn̂ ,S2n̂ ,S3n̂ , . . . (4.36)

With this sequence, the series sum is deemed to have
verged if successive differences between sums decrea
magnitude with the last difference being less than some
scribed tolerancee. That is, the convergence criteria for th
sequence of Eq.~4.36! are

uS2n̂2Sn̂u.uS3n̂2S2n̂u, uS3n̂2S2n̂u,e (4.37)

Alternatively, a more stringent test for convergence is ba
upon a sequence in which the number of members in pa
sums is successively doubled. Then the convergence cri
become

uS2n̂2Sn̂u.uS4n̂2S2n̂u, uS4n̂2S2n̂u,e (4.38)

Now consider the application of the foregoing criteria
the particular instance of summing a harmonic progress
namely,

Sn̂5 (
n51

n̂
1

n
(4.39)

Using an area estimate for Eq.~4.39! gives

Sn̂'E
1/2

n̂11/2 dn

n
5 ln~2n̂11! (4.40)

While Eq. ~4.40! is just an approximation, it does disclos
the logarithmic divergence of the sum in Eq.~4.39!. Conse-
quently, Eq.~4.39! represents a good series to test the c
vergence criteria of Eq.~4.37! and Eqs.~4.38! to see if they
can detect divergence.

Using Eq.~4.40! and the first sequence of partial sums
Eq. ~4.36!, we have, forn̂ large,

Sn̂' ln n̂1 ln 2

S2n̂' ln n̂12 ln 2, S2n̂2Sn̂' ln 22 ln 150.69 (4.41)

S3n̂' ln n̂1 ln 21 ln 3, S3n̂2S2n̂' ln 32 ln 250.41

Continuing, successive differences equal the difference
tween the natural logarithms of two successive integers. A
result, the convergence criteria of Eqs.~4.37! can be met,
since differences are decreasing in magnitude and event
can be made smaller than any prescribede. The first conver-
gence criteria of Eqs.~4.37! thereforefail to detect that the
series is diverging.

On the other hand, the sequence with doubling has

S2n̂' ln n̂12 ln 2, S2n̂2Sn̂' ln 2

S4n̂' ln n̂13 ln 2, S4n̂2S2n̂' ln 2 (4.42)

Thus, the first convergence criterion of Eqs.~4.38! is not
complied with, revealing the lack of convergence of th
logarithmically divergent series. The second converge
criteria of Eqs.~4.38! thereforepasswith respect to diver-
gence detection. This suggests adopting the analogue of
~4.38! when undertaking numerical stress analysis.
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Accordingly, we successively systematically halve d
cretization intervals for a sequence of at least three anal
and examine whether the magnitude of differences in ma
mum stress values is decreasing. Initially, we favor unifo
discretization throughout as a means of readily ensuring
tematic refinement. We next demonstrate this approach o
set of four sample configurations, each having a differ
stress singularity present: The last three of these analyse
taken from Sinclair@151#.

The first configuration analyzed features a crack subjec
to remote tensile loading~as in Fig. 14 but withm15m2 ,
n15n2 , andF replaced by a uniform tractions0). So as to
limit the extent of discretization, we in fact take a period
array of such cracks sharing a common crack plane.
cracks all have length 2a and a center-to-center separatio
from their nearest neighbor of 4a. An exact solution for such
a configuration is given in Westergaard@152# and shows the
presence of inverse-square-root singularities in the nor
stresses ahead of the cracks. To analyze the configuration
use an integral equation derived via periodic Flamant l
loads. In the numerical analysis of this integral equation,
discretize the unknown as a piecewise constant on a se
intervals of equal length. Given an appreciation of the p
sible singular character of this unknown, numerical alg
rithms of superior efficiency can readily be devised. He
though, we are proceeding as if we hadno such awareness
and asking the numerics themselves to reveal any singula
present. Results from applying our unsophisticated numer
analysis are presented in Table 5 for the maximum transv
normal stress ahead of a crack (smax), normalized by
s0(snom).

The second configuration treated entails a 90° reent
corner under tension~as in Fig. 16 withf53p/2). The spe-
cific finite elastic plate chosen results from taking a squa
with uniform traction s0 applied to its upper and lowe
edges, and cutting out a 90° corner on one side so that
vertex of the corner is right at the center of the origin
square. For such a configuration, the strongest of the sin
larities for P5 in Table 2 and Fig. 2d can be anticipated

Table 5. Numerical divergence in the presence of stress singularities

Configuration
—analysis

No. of intervals
or elements

smax

snom

Percentage
change

Periodic crack
under tension
—integral equation

32 4.49 —
64 6.22 39

128 8.71 55

Reentrant corner
under tension
—FEA with three
node triangles

48 2.75 —
192 3.99 45
768 5.63 60

3072 7.83 80

Epoxy-steel butt
joint under tension
—FEA with four
node quadrilaterals

10 1.22 —
40 1.49 22

160 1.94 37
640 2.51 47

2560 3.23 59

Surface step shear
—FEA with four
node quadrilaterals

16 1.12 —
64 1.35 21

256 1.59 21
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Fig. 19 Finite element grids for reentrant corner under tensiona)
initial grid with 48 elements,b) first refinement with 192 element
p

e

t
b

t

e
o

s

of

alv-
gu-
eri-
er
ni-
the
of

ws.

l
if

re-
is

rity
h.
in-
riori
wl-

naly-
also
t in
uc-

, it is

e
ad
tor.
ten-

to
tion
er
of

he
e

in
y
ble
ly

y-

ect
of

s of

ut-

ses
ing
are

sur-

an
stic
ni-

d
ad-

rilaterals. Results are included in Table 5 withsmax being the
peak principal stress at the point of application of the sh
step andsnom beingt0 .

To examine convergence in Table 5, we take the diff
ence insmax/snom for successive analyses normalized
the ratio’s value for thefirst analysis and expressed as
percentage. This process leads to the results under the
umn headed ‘‘percentage change’’ in Table 5. For these
centage changes,no decreasewith successively refined
analysis reveals divergence and the presence of a singul
~cf the first of Eqs.~4.38!!.

For the first two configurations treated, the percenta
change increases in a similar and pronounced way: This
be expected since they have very similar singularities.
the third, with its somewhat weaker singularity, the increa
are less marked but nonetheless clearly evident. In fact,
these first three, stress increases with grid refinement
proach that expected from the singularity present. That
stresses increasing by a factor of 2g whereg is 1/2, 0.46, and
1/3, respectively. For the last with its logarithmic singulari
the percentage changes remain constant, thus still indica
this singularity’s presence even if only with a weak sign
Hence singularities are numerically unearthed for all four
our sample configurations.

The results in Table 5 support the use of systematic h
ing of discretization lengths to reveal the presence of sin
larities. However, they are merely a set of numerical exp
ments for which the approach works—for oth
configurations/results it may not. For example, the mag
tudes of the singular shear stress on the interface in
epoxy-steel butt joint, as found on the same sequence
meshes as used for the normal stress there, are as follo

tmax/s0 : 0.29, 0.40, 0.50, 0.61, 0.74

% change: 2, 38, 34, 38, 45 (4.43)

The results in Eq.~4.43! are consistent with a numerica
analysis which is converging on the first three grids, even
only slowly so. The later grids, though, start to diverge,
vealing the singularity present. What is happening here
that, in addition to aO(r 21/3) singularity, the shear on the
interface can have other regular contributions asr→0. The
participation of these regular terms here hides the singula
from the coarser grids. Ultimately it has to show thoug
Nonetheless, the possibility of regular fields concealing s
gular ones to a degree underscores the value of an a p
appreciation of potential singular stresses, since such kno
edge tends to make one check a more extensive set of a
ses for their actual realization. Such an appreciation may
enable the region of grid refinement to be confined to tha
the neighborhood of the potential singularity, thereby red
ing computational effort.

4.4 Numerical analysis: Resolution of singular fields

Once a stress singularity’s presence has been detected
necessary toquantify its participation if one is to effect aK
interpretation. At this point, asymptotic identification of th
nature of the singularity is no longer optional, but inste
essential in order to properly define a stress intensity fac
because this is the singularity associated with transverse
sile loading. That is, we expect stresses ofO(r 20.46) as r
→0, wherer here is the distance from the corner. Turning
the analysis of the configuration, symmetry enables atten
to be confined to the upper half of the plate. For this up
half, we continue to proceed as if we had no appreciation
the possibility of a stress singularity and simply employ t
finite element method with uniform grids comprised of thr
node triangles. The first grid has 48 such elements~Fig. 19a!,
the second is formed by halving element sides to resul
192 elements~Fig. 19b!, and subsequent grids are formed
further halving element sides. Results are included in Ta
5, wherein smax is the transverse normal stress direc
ahead of the corner andsnom is s0 .

The third configuration considered is that of an epox
steel butt joint under tension~as in Fig. 2e!. The steel is
taken to be rigid and only the epoxy analyzed. The asp
ratio of the epoxy layer is set as 10:1. The Poisson’s ratio
the epoxy is taken to be approximately 3/8 so that stresse
O(r 21/3) asr→0 can be expected,r here being the distanc
from points where the epoxy-steel interface meets the
side surface of the specimen~as for P7 of Table 2 and Fig.
2e!. Finite element analysis is again unsophisticated and u
a sequence of uniform meshes, with the elements compri
the meshes now being four node quadrilaterals. Results
included in Table 5, whereinsmax is the maximum normal
stress on the interface where it terminates at the outer
face, andsnom is the nominal stress at such a location.

The fourth and final configuration treated concerns
abrupt application of a shear traction to the edge of an ela
plate~as in Fig. 2f!. The jump in the shear stress has mag
tudet0 . The singularity anticipated is logarithmic~as atP8

in Table 2 and Fig. 2f!. Finite element analysis is performe
on a sequence of uniform grids comprised of four node qu



r

h

d

r
c
t
h

t
e
e
p

l
i
i

t

e
o
.

f

t

a

al

-
me
ve
the
p-
s a

ed,

en-
n
is
ce

a
its
or

the
er

g
ibly
lim-
al

to
ro-
e
on-
om-
ith

by
re-

ch-
ide
e

cali-
three
tes

, in

ntly
t of
er-
er-
id,

not
The

r-
rior

288 Sinclair: Stress singularities in classical elasticity–I Appl Mech Rev vol 57, no 4, July 2004
With a definition ofK in hand, one can proceed with nume
cal assessment using either a boundary integral equation
proach or a finite element analysis.

A good review of the early research on the application
finite element methods to singular elasticity problems
given in Gallagher@153#. This paper was part of a first sym
posium on numerical methods in fracture mechanics~Lux-
moore and Owen@154#!. Developments since, for bot
boundary integrals and finite elements, are reflected in s
sequent symposia@155–158#. In what follows, we concen-
trate on finite element analysis since it enjoys more wi
spread use today.

There are two issues facing the stress analyst when
tempting the numerical analysis of a singular problem. Fi
to resolve the singular fields themselves sufficiently ac
rately numerically. Second, to extract from the numerics
associated stress intensity factor without diminishing t
level of accuracy. In this section we focus on the first act
ity.

With respect to resolution, a number of finite eleme
methods have been developed. These may be loosely ca
rized as belonging to one of the following three class
methods which add special elements, methods which us
cal grid gradation, and methods which use superposition
cedures. Special elements attempt to improve resolution
introducing appropriately singular representations into the
ements immediately contiguous to the singular point. G
gradation attempts the same goal by suitably increasing
number of regular elements in the vicinity of the singu
point. And superposition procedures attempt it by super
posing analytical singular fields throughout the entire reg
of interest, then letting the regular fields in standard eleme
effectively correct boundary values so that they comply w
the prescribed conditions sought. In terms of implemen
tion, special elements typically take the least amount of
fort on the part of the stress analyst. This is especially
when the singular fields are introduced simply by moving
mid-side nodes of isoparametric elements. This techniqu
developed for cracks in Henshell and Shaw@159# and Bar-
soum @160#. The approach is generalized to apply to oth
singularities in Wait @161#.26 Given the relative ease o
implementation, if such techniques can provide suffici
resolution in return for reasonable levels of computati
they would seem to be the method of choice at this time

Before describing an assessment of the resolution of
particular method, it is appropriate to outline the elements
an evaluation protocolthat needs to be adhered to in ord
for an appraisal of any numerical method to be meaning

i! The method needs to be completely prescribed w
respect to how it is to be implementedprior to any
testing. Under these circumstances, there is no mix
of the calibrating of any adjustable parameters in
method with true testing of the same.

ii ! The problems employed must have no ambiguity as
what are their correct answers so that there is no
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biguity as to the errors incurred in their numeric
analysis. This is probably best achieved viatest prob-
lems with known and analytical solutions. Alterna
tively, if two or more independent analyses of the sa
problem employing different numerical methods ha
converged to exactly the same answer to more than
number of significant figures being used in the a
praisal, the problem can reasonably be viewed a
benchmarkone and used.

iii ! An extensive set of such problems should be analyz
with each member of the set being markedlydifferent
from all the others. Ideally, the set should be repres
tative of all the decidedly distinct types of problem o
which application of the subject numerical method
envisaged. Then it is reasonable to infer performan
in general practice from the numerical experiments.

iv! The evaluation should include a check onconvergence.
In the case of FEA, this should be undertaken on
sequence of grids, with each grid being formed from
predecessor by refinement which is systematic,
nearly so. In this way one can obtain an estimate of
computational level likely to be required should furth
accuracy be needed.

Any evaluation that falls significantly short of complyin
with the above should be viewed as preliminary, and poss
encouraging further appraisal, but nevertheless seriously
ited in its ability to justify the general use of the numeric
method under consideration. Preliminary evaluations are
be expected by the initial developers of novel numerical p
cedures: Their contributions principally lie in conceiving th
new approach in the first place, then explaining and dem
strating its use. However, subsequent evaluations and c
parisons with other methods should, in essence, comply w
the foregoing protocol.

Returning to the evaluation of special elements formed
displacing mid-side nodes, the originating papers are p
liminary in this regard. Henshell and Shaw@159# treats some
six problems that, as reported anyway, are not strictly ben
mark problems in accordance with the protocol. Setting as
this limitation, for only three of the problems is the sam
grid used—the other three, therefore, can be viewed as
brating the respective meshes used to a degree. For the
with the common grid, one problem in some sense calibra
the approach while the other two are quite similar. Hence
effect, there is one trial problem in Henshell and Shaw@159#.
For this trial problem, stress intensity factors are appare
determined to within about 1–2% using a modest amoun
computational effort. Henshell and Shaw also do a conv
gence check on one of their problems: This exhibits div
gence in computingK between a coarse and a medium gr
but convergence from the medium to a fine. Barsoum@160#
analyzes only one 2D elastic configuration which again is
established as a benchmark problem within the paper.
paper uses several different meshes~which together do not
constitute a convergence check!, and suggests that quarte
point elements formed from six node triangles have supe
accuracy to corresponding elements formed from eight n
quadrilaterals. Barsoum also considers a thermoelastic a

, and
26Further references on the use of such elements may be found in Lim, Johnston
Choi @162#.
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3D application. In sum, the main thrust of Henshell a
Shaw @159# and Barsoum@160# is the development o
quarter-point elements for the FEA of cracks, and demons
tions of its potential. This is well done in the two pape
Thorough testing of the approach, on the other hand, is
attempted.

Meda and Sinclair@163# provides an appraisal of the ap
proach which adheres to the previous protocol in large p
Therein, a series of crack problems are analyzed using
quarter-point elements of@159,160#. The problems seek to
simulate some of the variety of physical effects encounte
in applications. The first configuration considered to this e
involves a periodic array of cracks, all of length 2a with
center-to-center separations of 2B, and under far-field trans
verse tension. By considering different spacings (a/B51/4,
1/2, and 3/4!, crack interaction effects can be studied. T
second configuration represents a round compact ten
specimen: Herein, loading is predominantly in bending
stead of tension. The third configuration simulates cra
opening loading: This is basically the same configuration
the second except that loading is displacement control
The fourth configuration reflects crack arrest by placing
crack tip in close proximity to a stiffener. The fifth and fin
configuration is a slanted crack under remote tension: Th
a mixed-mode situation. Together, the five configurations
alize a total of seven different problems.

All of the problems are test problems in that they ha
known closed-form solutions. For the first problems with t
different crack spacings, these solutions can be taken dire
from Westergaard@152#. Notice, though, that Westergaard
treatment applies a uniform transverse tension at infin
Since FEA requires that we treat a plate of finite height,
solution in@152# must be evaluated at the height chosen a
the stresses found used to apply tractions there. While s
tractions are nearly the same as those for simple ten
when the height is greater than the crack spacing, they
differ a little. The inclusion of such differences is essentia
one is to formulate a problem with a true exact solution us
@152#. For problems entailing the next three configuratio
exact solutions are constructed by the superposition of fi
sets of eigenfunctions~identified using Williams@20#!. The
resulting sums maintain stress-free crack flanks and sym
try conditions ahead of the crack. They do not replicate
boundary conditions elsewhere that perhaps one would m
naturally apply, but do reflect the character of the load
sought. In any event, whatever conditions they do realize
the remainder of the boundary are taken to be, in fact,
exact conditions thereon. Thus, these sums themselves
the exact solutions to the problems so posed. The last p
lem solution is obtained by combining the solution for
crack under uniform tension at infinity~see, eg, Tada et a
@55#, pp 1.20, 5.1!, with the corresponding solution for un
form shear of Irwin@164#. As for the first problems, thes
solutions must be evaluated at finite stations in order to m
a precise statement of the problem.

For the analysis of this series of test problems, t
quarter-point elements are available: one obtained from e
node quadrilaterals, the other from six node triangles. Tri
d

tra-
s:
not

-
art.
the

red
nd

e
sion
in-
ck
as

led.
he
l

s is
re-

ve
he
ctly
’s
ity.
he
nd
uch
ion
do
if
ng
s,
ite

me-
the
ost

ng
on
the
are

rob-
a

l
-

ake

o
ight
n-

gular elements are chosen over quadrilateral since the si
lar fields are then present within the element on all rad
rays originating at its vertex, rather than just along its ed
as is the case for quadrilateral elements. To be consisten
node triangles are used as host elements. The local arra
ment of the quarter-point elements follows ANSYS reco
mendations~Chapter 3,@32#!. It features a fan of congruen
isosceles triangles spreading out from the crack tip~Fig. 20!.
Each triangle subtends an angle ofp/6 at the tip and has an
altitude which is about one eighth of the crack lengtha The
remainder of the mesh is generated automatically using
command AMESH~Chapter 9,@32#!, since this is a conve-
nient means of doing so, and one likely to be employed
practice. This procedure is adhered to for all problems
generate their baseline grids. These grids are taken as su
the first instance because they are essentially the grids
ommended by ANSYS@32#. Furthermore, in practice, like
grids should probably result in no more than an order
magnitude greater number of degrees of freedom, and
cordingly be computationally tractable~the maximum num-
ber of degrees of freedom for the baseline grids used be
2533!.

To examine convergence, baseline grids are coarse
and refined by approximately quadrupling and quartering
ement areas, respectively. The grid refinement is not syst
atic, though it is nearly so. This is because of the continu
use of the convenient automatic mesh generator, AME
which is not completely systematic in its element configu
tions. It is also because of the different types of eleme
involved: That is, because the number of quarter-point e
ments remains constant while the number of host elem
changes. Around the crack tip, though, the arrangemen
Fig. 20 is preserved with element altitudes being doub
and halved, so that locally grid refinement may be viewed
being systematic. These pairs of additional grids are a
used in the FEA of all seven test problems.

In evaluating the resolution of the finite element analy
in Meda and Sinclair@163#, we focus on the stress intensit
factors computed via it since these are the key results fro
practical perspective. However, in making this choice, we

Fig. 20 Local arrangement of quarter-point elements at a crack
~following ANSYS recommendations!
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Table 6. Resolution ofK fields using quarter-point elements

Test
problem
description

Number of elements
used in coarse,
medium and fine grids

Absolute
percentage
error in K

Periodic crack
under tension:
a/B51/4, 1/2, 3/4

174 1
620 0

1959 0

Round compact
tension specimen

97 1
328 0

1207 0

Specimen with
crack opening
loading

97 37
328 4

1207 5

Crack arrest
at a stiffener

97 4
328 2

1207 1

Mode I for
slanted crack
under tension
Mode II

216 5
488 3

2000 1
216 21
488 10

2000 4
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terms of the previous rating scale, accuracy is excellent in
problems, good in 8, and satisfactory in 1. In 33 of the
problems, values ofK computed are converging througho
the three-grid sequence employed. In the other problemK
values are diverging from the coarse to the medium me
but converging from the medium to the fine. Based on
number of elements used, the average convergence ra
about halfway between linear and quadratic.

In sum, therefore, the quarter-point elements of Hens
and Shaw@159# and Barsoum@160#, when arranged around
crack tip in accordance with the recommendations of A
SYS @32#, would seem to offer good levels of resolution
the singular fields involved in return for quite modest leve
of computation. In general, then, the shifting of mid-si
nodes on isoparametric elements would appear likely to p
vide a means of numerically analyzing singular fields w
more than adequate accuracy, and doing so fairly readily

4.5 Numerical analysis: Extraction ofK ’s

With respect to extraction, a variety of procedures have b
suggested over the years. Probably the most obvious
approach is to attempt to take advantage of an apprecia
of the asymptotic character of a singularity to fit loc
stresses or displacements and, thereby, estimate stress
sity factors. An early development of suchlocal fitting meth-
ods is Chan, Tuba, and Wilson@166#. Alternatively, for
cracks, one can obtainK by computing energy release rate
~as in ~3.5!, ~3.8!, and ~3.9!!. Several distinct implementa
tions of this approach have been put forward. The m
widely practiced is via theJ integral of Rice@88#. Others
include the stiffness derivative technique of Parks@167#, and
the virtual crack extension method of Rybicki and Kannin
@168#. The virtual crack extension method uses local resu
to estimateG, henceK: accordingly it qualifies as a loca
fitting method. TheJ integral, on the other hand, is apath-
independent integraland consequently does not have to dra
on local fields. Parks@167#, in an Appendix, shows that th
stiffness derivative technique is an area-analogue of thJ
integral, so it also does not need to rely on local fields. T
is a positive attribute since fields close to any singularity c
be expected to be the least accurately determined via num
cal analysis. A further set of procedures for extractingK
which share this attribute are based on specially develo
path-independent integrals. These integrals are constru
by an adroit invoking of Betti’s reciprocal theorem: Th
leads to integrands that are akin to those in Somiglia
integrals.27 The method of construction has its origin in Ste
@169#. The integrals that result are devoid of the direct phy
cal interpretation ofJ, but are computationally more adap
able. For cracks, as a consequence, they can readily di
guish between different modes, as in Stern, Becker,
Dunham@170#. They can also be adapted to the fixed-fr
corner, as in Stern and Soni@171#, and the interface crack, a
in Hong and Stern@172#. Others have since taken advanta
of the ideas underlying the construction of such pa
unfortunately combining an appraisal of singular field re
lution with one ofK extraction capability. Provided the latte
is consistently reasonably accurate, we should still be abl
infer the effective levels of singular field resolution obtain
~we examine the issue ofK extraction in the next section!.

With respect to the accuracy sought, we view 0–1% er
as excellent, 11 – 5% as good, 51 – 10% as satisfactory, an
greater than 10% as unsatisfactory. In justification there
given the likely level of agreement between physical
sponse and predictions made viaK, we can expect an exce
lent analysis, and even just a good analysis, to leave
agreement largely unaltered, while a satisfactory anal
probably would not impair it significantly.

The number of elements actually used and the co
sponding errors in stress intensity factors are summarize
Table 6~the same errors are obtained for all three separat
in the periodic crack problem!. On the baseline~medium!
grid, the average absolute error is 2.4%, with four results
excellent accuracy, three with good, and one just satisfac
With the exception of the problem with crack opening loa
ing where results have yet to converge in going from
medium to the fine mesh, all results are converging.

A further evaluation of the resolution of quarter-point e
ements which largely adheres to the protocol given here m
be found in Cooper et al@165#. This features more displace
ment controlled/Mode II loadings, the two situations whi
would appear to promote the greatest errors for the appro
~Table 6!. All told, 34 test problems are constructed in@165#,
with 18 being Mode I, 16 Mode II, and half for each mod
having prescribed displacements. They are analyzed u
the same elements and mesh generation scheme as in
and Sinclair@163# ~ie, following ANSYS @32# recommenda-
tions coupled with easy-to-implement automatic mesh g
eration!. This results in a baseline grid of 276 elements, a
coarse and fine grids of 57 and 916 elements, respectiv
For the baseline grid, the average absolute error inK for all
34 test problems is 1.6%, while the maximum is 5.9%.
 In

27A statement of Betti’s reciprocal theorem may be found in Art 121, Love@12#:
Somigliana integrals Art 169, ibid.
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independent integrals to develop them for further singular
configurations. Examples include the stress-free reentrant
corner in Carpenter@173# and in Sinclair et al@174#, the butt
joint in Okajima and Sinclair@175#, and the bimaterial reen-
trant corner in Carpenter and Byers@176#. The path-
independent line integral of Okajima and Sinclair@175# can
also be found in Banks-Sills@177#, together with an equiva-
lent area integral.

At the outset in evaluating these competing techniques,
local fitting methods appeal in their ease of implementation
and adaptability to different singularities. However, once
corresponding path-independent integrals have been devel-
oped and made available as algorithms within standard
codes, implementation typically requires little if any extra
effort on the part of the stress analyst. Further, using Stern’s
approach, path-independent integrals are quite adaptable. So
the initial advantages of local fitting methods can be ex-
pected to be of no great consequence in practice as the de-
velopment of path-independent integrals continues. There is,
though, an inherent deficiency in local fitting methods that is
of concern in practice.

This deficiency stems from the fact that local fitting meth-
ods fit quantities near but not at the singularity. They must
avoid the singular point because stresses there are un-
bounded and therefore not fitting, while displacements are
zero leaving nothing to fit. Given such necessary backing off
from the singular point, other regular fields can participate in
any fit. This participation cannot generally be either com-
pletely accounted for by any local fitting method, or com-
pletely eliminated. As a result, local fitting methods have the
potential to be unreliable in their accuracy. That is not to say
they cannot furnish accurate, or even occasionally extremely
accurate, estimates ofK: Just that they can also provide un-
satisfactory estimates.

One might think that all that is required to overcome such
deficiencies is to develop a better local fitting method. Logi-
cally, though, this cannot be done in any complete sense. To
explain further, any fit must match afinite number of quan-
tities. Hence, since singular configurations can have aninfi-
nite number of regular eigenfunctions participate in addition
to their singular ones, there always exists the possibility of
some being left unaccounted. Indeed, the existence of such
unfitted eigenfunctions at a crack tip is what is exploited in
Sinclair @132# to cause the complete inaccuracy of several
local fitting methods~ie, to have them estimateK50 when

KÞ0, and vice versa!.28 Moreover, the app
be adapted to ensure the downfall of any
once the specifics of how it is to be impl
decided. However, these types of demon
trived test problems, so that there is an
degree such difficulties are actually enco
this issue, we draw on evaluations in the

The originators of local fitting metho
extractingK from numerical analyses—he
and Rybicki and Kanninen@168#—underst
preliminary evaluations that showcase p
rather than establish accuracy levels for
true test or benchmark problems. Further
their methods in conjunction with quarter-
selected approach for resolving singular
be said of the originators of path-indepe
means ofK extraction—here Parks@167#
@170#.29 Turning to evaluations that do us
ments, two limited assessments are ava
and Sherman@178#, Pang@179#, and Pang

In Banks-Sills and Sherman@178#, thr
problems are analyzed, two being quite s
These problems are not true test prob
qualified in@178# as benchmarks in the se
in the evaluation protocol. However, they
in the latter role with a less stringent d
adopted here. The best crack-flank displ
cedure considered results in an appare
0.9%, with excellent accuracy for two pro
other one. The path-independent integra
as evaluated either directly or by the
technique, results in an apparent average
with excellent accuracy on all three prob
evaluation, therefore, would seem to
independent integrals are more accura
methods.

In Pang@179# and Pang and Leggat@18
set of crack problems is analyzed. The s
distinct configurations, eight different
twenty-seven different analyses/stress in

28Essentially, this is the same characteristic of l
employed to produce the erroneous results for nearb
described in Section 3.5.
29Rice @88# introduces theJ integral to a different end
not attempt any evaluation of it as a numerical tool.

Table 7. Comparison of someK-extraction methods using Pang and Leggat†180‡

Trial
problems
involved

Measures
of apparent
absolute error

J via
stiffness
derivative

Crack-flank
displacement
fit

Virtual
crack
extension

Stress fit
ahead of
crack

No. 1 with
8 grids

Average
error ~%!

0.5 1.2 2.3 3.8

Accuracy
distribution

8e 5e, 3g 8g 6g, 2s

Nos. 2–8 Average
error ~%!

2.8 3.0 — 4.7

Accuracy
distribution

6e, 10g
3s

4e, 12g
3s

— 1e, 11g
6s, 1u

Key: e...excellent~0–1%!, g...good (11 – 5%), s...satisfactory (51 – 10%), u...unsatisfactory (.10%)
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Table 8. Evaluation of two K-extraction methods

Test
problems
involved

Absolute error
measures for
baseline grid

H
via direct
integration

Crack-flank
displacement
fit

7 ~with 8 K ’s),
from Meda &
Sinclair @163#

Average
error ~%!

2.4 10.6

Accuracy
distribution

4e, 3g
1s

4e, 1g
1s, 2u

34, from
Cooper
et al @165#

Average
error ~%!

1.6 9.3

Accuracy
distribution

18e, 15g
1s

7e, 10g
7s, 10u

Key: e...excellent~0–1%!, g...good (11 – 5%), s...satisfactory (51 – 10%),
u...unsatisfactory (.10%)
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ber ~12!. Half of the latter instances entail errors that a
greater than 20%. Moreover, while performance can gen
ally be improved by grid refinement, this is not always s
The displacement fitting procedure yields results which
not converging on going from a baseline grid to a yet fin
grid on seven occasions. What is making its presence
here is the inherent unreliability of local fitting methods.

The H integrals of Stern, on the other hand, almost u
formly provide good to excellent estimates ofK on baseline
grids. Moreover, the two instances of merely satisfactory
curacy converge to at least good on grid refinement. Ac
ally, what is being displayed here is not the accuracy ofH
integrals in extractingK: They essentially do this exactly, a
can be established by feeding the integrands in their a
rithms exact values of the field quantities called for inste
of finite element estimates. Thus, what is being shown
really the accuracy of the FEA determination of the fields
these singular test problems.30 This accuracy is more than
adequate provided fields in the quarter-point elements th
selves, as well as those immediately contiguous to them,
avoided. This can readily be done by taking a path which
outside these elements when computing anH integral:
Where precisely does not matter as long as these inner
ments are not on it.

In Meda and Sinclair@163#, there is a further compariso
of an H integral withJ. SinceJ by itself cannot distinguish
between different modes, the comparison does not incl
the mixed-mode test problem.31 On a common subset of five
test problems analyzed on the baseline grid,J averages 1.0%
absolute error inK, while H averages 0.4%. Hence, if any
thing, this limited evaluation would indicate thatH is
slightly more accurate thanJ.

The foregoing discussion focuses on 2D analysis. T
degree, similar capabilities are available in three dimensio
see Banks-Sills@181# and Meda et al@182#

In all, therefore, path-independent integrals can be
pected to be more reliable than local fitting methods a
means of extracting stress intensity factors. There are un
lying reasons to think this might be so, and evaluations
date demonstrate that it is. Hence, path-independent integ
are to be preferred in practice. For cracks, the choice o
specific integral and the way in which it is computed
largely a matter of availability/convenience. For other sing
lar configurations, it may well be that integrals develop
along the lines of Stern and his coworkers are the only op
for obtaining a corresponding path-independent integral.

When path-independent integrals are used in conjunc
with isoparametric elements with mid-side nodes shifted
reflect the stress singularity present, more than adequate
curacy in the resolution and the extraction of stress inten
factors can be obtained in return for reasonable levels of b
implementation and computation. Other approaches~see, eg,
@154–158#!, in concert with path-independent integrals, c
y

able
are strictly qualified as true test or benchmark problem
though they could be viewed as the latter with a less st
gent definition. Local fitting methods considered include d
placement and stress fits, and virtual crack extension. P
independent integrals considered include theJ integral as
calculated directly or via the stiffness derivative techniq
Results for the best displacement and stress fits, as well a
those available from virtual crack extension and for theJ
integral computed via the stiffness derivative technique,
summarized in Table 7. The apparent order of decrea
accuracy is:J integral, displacement fit, virtual crack exte
sion, and stress fit. When theJ integral is computed directly
apparently the average absolute error is 1.4% with excel
accuracy in six instances, good in three: For theJ integral
computed via the stiffness derivative technique on the sa
set, apparently the average absolute error is 1.7% with ex
lent accuracy in three instances, good in six. Hence, if a
thing, this limited evaluation would indicate that direct ca
culation ofJ is slightly more accurate than via the stiffne
derivative. Irrespective of the means of computation, pa
independent integrals would definitely appear to be more
curate than local fitting methods in Pang and Leggat@180#.

In the earlier cited papers, Meda and Sinclair@163# and
Cooper et al@165#, there are also contained assessments oK
extraction methods. These assessments do basically adh
the evaluation protocol. The two methods so evaluated
crack-flank displacement fitting and path-independent in
grals developed a` la Stern. For the first, its specifics are give
in ANSYS @32#: Reasons for believing the particular a
proach prescribed therein is amongst the best of its ge
available are given in Cooper et al@165#. For the second, the
precise forms of the integrals used are given in Sinclair e
@174#, wherein they are dubbedH integrals. Both approache
are applied to all the test problems for planar cracks that
set out in@163,165#. Implementation is in concert with th
same arrangement of quarter-point elements as earlier.
sults for the errors incurred on baseline grids are summar
in Table 8.

Evident in Table 8 is that the displacement fitting proc
dure on baseline grids typically leads to barely satisfact
estimates ofK. What is more disconcerting is the scatter
performance. While this local fitting method produces e
mates of excellent accuracy for a number of problems~11!, it
also furnishes unsatisfactory estimates on a comparable n
in
ti-

um-

30It follows that our previous use ofK to assess FEA resolution is not polluted b
extraction error becauseH integrals are employed in this appraisal.
31The J integral can be supplemented by a further path-independent integral to en
the participation of different modes to be distinguished: see Ch 5, Cherepanov@62#.
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offer comparable and even superior accuracy for the s
computation levels, but can take more effort on the part
the stress analyst.

5 CONCLUDING REMARKS

In classical elasticity, stress singularities can occur un
point loads, line loads, and so on. They can also occur a
from any such concentrated loading. Then typically they
flect, albeit crudely, physical stress concentrations. In
role, these singular stresses direct attention towherefailure
is likely to occur, but are useless in themselves for predict
when it occurs. It is this latter type of singularity that is o
concern in attempting to ensure structural integrity. Acco
ingly, this type of singularity is the focus here, as well as
Part II of this review.

When stress singularities occur away from concentra
loads, they do so in concert with discontinuities. These d
continuities can be in boundary directions, or in bound
conditions, or in elastic moduli. While such discontinuiti
do not have to have associated stress singularities, often
do. Discontinuity singularitiesare thus far from rare in elas
ticity ~Part II of this review amplifies their occurrence fu
ther!.

At the outset in dealing with discontinuity singularities,
is essential that theirparticipation be recognized. Otherwise
one risks making stress-strength comparisons in their p
ence, an exercise in futility. Given recognition of a discon
nuity singularity, the engineer has three options in seekin
ensure structural integrity.

i! To rely primarily on testing and forego analysis, oth
than perhaps nominal~1D! stress analysis.

ii ! To proceed with classical stress analysis~2D or 3D!,
then try to interpret the stress singularity.

iii ! To improve the modeling so that the singularity is r
placed with physically sensible stresses that can
compared with strengths.

For the all-important first step of identifying the presence
a stress singularity in elasticity, two types of analysis
available: analytical asymptotics and numerical methods

With respect toasymptotics, three principal approache
exist for 2D analysis: via the Airy stress function, v
Kolossoff-Muskhelishvili complex potentials, and via th
Mellin transform. These approaches are well developed
this time. Properly implemented, all three identify the sa
stress singularities: Hence, the choice of which to use
largely a matter of personal preference. In two dimensio
the various elastic stress singularities actually identified
date with these approaches may be summarized as foll
For any stress components, as the singular point is ap
proached, elasticity can have:

s5O~r 2g cos~h ln r !!1O~r 2g sin~h ln r !!

s5O~r 2g ln r !1O~r 2g!

s5O~r 2g!

s5ord~ ln2 r !1ord~ ln r ! (5.1)
me
of
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s5ord~ ln r !

s5O~ ln r !

s5O~cos~h ln r !!1O~sin~h ln r !!

as r→0, whereing is the singularity exponent (0,g,1),
and h is the imaginary part of the eigenvalue involved.
Eqs.~5.1!, O is associated with locally homogeneous boun
ary conditions, ord with locally inhomogeneous~ord being
defined in Section 1.2!. Corresponding stress fields for plate
in extension may be found in Section 4.1, Eqs.~4.7! and
~4.17! (g512l,12j, respectively!, and in Section 4.2,
Eqs. ~4.18! and ~4.28! (g512l). Further corresponding
stress fields for other configurations are given in Part II,
gether with specifics of the numerous configurations that
gender such singularities.32

With respect tonumerical methods, the presence of sin
gularities can bedetectedby the divergence of peak stres
values. Evidence of divergence requires a suitably refi
sequence of discretizations. The sequence recomme
here halves discretization intervals on a sequence of at l
three analyses. With this approach in 2D FEA, element nu
bers quadruple with grid refinement. In 3D FEA, eleme
numbers increase by a factor of eight. Even with such lev
of computational effort, there is no guarantee that a singu
ity be detected. However, numerical experiments to date
dicate that one is reasonably likely to unearth a singulari
presence with the approach.

Once a discontinuity singularity is known to be prese
the singular fields active require specialinterpretationif they
are to be used. The foremost such interpretation in elasti
takes the coefficient of the singularity, the stress intens
factor K, as the parameter controlling brittle fracture a
failure in general. This remains the basic tenet of linear e
tic fracture mechanics~LEFM! even today. While LEFM is
concerned primarily with the stress singularities at cracks
is possible to consider extension of its basic tenet to ot
singularities.

For the case of cracks within a single material, the pr
tice of LEFM is quite accomplished at this time. In tw
dimensions in particular, finite element analysis is most
pable when it comes to calculating stress intensity facto
The means favored here for resolving the crack-tip stresse
via quarter-point elements~Section 4.4!, though certainly
other possibilities are available. The most reliable means
extractingK from such an analysis would appear to be v
path-independent integrals~Section 4.5!. Companion testing
is also well controlled and reproducible~Section 3.4!. How-
ever, while predictions made by LEFM are typical
trendwise correct, there are occasions when there is con
erable room for improvement in their accuracy~Section 3.4!,
and extension to other singularities may well face yet grea
difficulties in making accurate predictions~Sections 3.2 and
3.3!. All told, there would appear to be a good case for

32The last stress of Eqs.~5.1! is not strictly singular, being bounded asr→0. However,
it is undefined asr→0, and consequently shares some of the difficulties associated
stress singularities.
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tempting toimprove the modelingso that stress singularitie
are replaced with physically sensible stresses.

For conforming contact problemsin elasticity, the re-
moval of singularities is now well understood. This remov
is accomplished by the policing of contact inequalities wh
there are sufficient degrees of freedom in a problem to ef
such policing~Section 2.4!. Commercial FEA codes are cu
rently available to implement such analysis. Resulting fin
stress fields continue to prove to be useful in enginee
practice.

For other singular configurations, the removal of singu-
larities is nowhere near as mature as it is for conform
contact. However, the realsource of such singularitiesis
emerging. These singularities do not really stem from
discontinuities present, nor from the field equations of el
ticity ~Section 2.1!. Rather, they stem from a probably u
witting introduction of effectively infinite stiffnesses in co
hesive laws. With this appreciation, it would appear to
possible to remove most if not all of the discontinuity sing
larities of elasticity by ensuring finite stiffnesses~Section
2.3!. Such removals can be pursued with or without rem
ing the original discontinuity, indicating the discontinuity
secondary role in the generation of stress singularities. T
can also be undertaken without introducing plasticity or la
strain effects, though such effects may merit inclusion
loading progresses. Implementation of this type of approa
however, faces some serious challenges. There are mod
issues, analytical tractability concerns, and interpreta
questions. Nonetheless, research in this area holds the p
ise of significant improvements in the physical appropria
ness of stress fields in classical elasticity in particular, an
solid mechanics in general.
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