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Warping Torsion  
In addition to shear stresses, some members carry torque by axial stresses. This is called 
warping torsion. This happens when the cross-section wants to warp, i.e., displace 
axially, but is prevented from doing so during twisting of the beam. Not all cross-sections 
warp, and even those that warp do not carry torque by axial stresses unless they are 
axially restrained at some location(s) along the member. Cross-sections that do NOT 
warp include axisymmetric cross-sections and thin-walled cross-sections with straight 
parts that intersect at one point the cross-section, such as X-shaped, T-shaped, and L-
shaped cross-sections. For these cross-sections all torque is carried by shear stresses, i.e., 
St. Venant torsion, regardless of the boundary conditions.  

Warping of I-sections 
As a pedagogical introduction to warping torsion, consider a beam with an I-section, such 
as a wide-flange steel beam. When torsion is applied to the beam then the flanges of this 
cross-section experiences bending in the flange-planes. In other words, torsion induces 
bending about the strong axis of the flanges. When the flanges are “fixed” at some point, 
such as in a cantilevered beam with a fully clamped end, some of the torque is carried by 
axial stresses. To understand this, denote the bending moment and shear force in each 
flange by M and V, respectively, as shown in Figure 1.  

 
Figure 1: Warping of I-section  

(z is the local axis for bending of flange, not the global z-axis of the cross-section). 

 
The torque that the cross-section carries by bending in the flanges is: 

 T = h ⋅V  (1) 
where h is the distance between the flanges and V is positive shear force in accordance 
with the document on Euler-Bernoulli beam theory. That document also provides the 
equilibrium equation that relates shear force to bending moment, which yields: 
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 V = dM
dx

   ⇒    T = h ⋅ dM
dx

 (2) 

The beam theory also provide the relationship between bending moment and flange 
displacement, w: 

 M = EI ⋅ d
2w
dx2    ⇒    T = h ⋅EI ⋅ d

3w
dx3  (3) 

where I is the moment of inertia of one flange about its local strong axis. Next, Figure 1 
is reviewed to determine the relationship between w and φ: 

 w = −φ ⋅ h
2

   ⇒    T = − h
2

2
⋅EI ⋅ d

3φ
dx3  (4) 

which resulted in the differential equation for warping torsion of an I-section. However, 
this equation is generally written in this format: 

 T = −ECw ⋅
d 3φ
dx3

 (5) 

which implies that, for I-sections, the cross-sectional constant for warping is: 

 Cw = I ⋅
h2

2
 (6) 

where it is reiterated that I is the moment of inertia of one flange about its local strong 
axis. 

Complete Differential Equation for Torsion 
As mentioned earlier, when warping is restrained the torque is carried by both shear 
stresses, i.e., St. Venant torsion and axial stresses, i.e., warping torsion. Specifically, the 
torque from shear and axial stresses are superimposed, which leads to the following 
complete differential equation for torsion: 

 T = GJ ⋅
dφ
dx

− ECw ⋅
d 3φ
dx3

 (7) 

When equilibrium with distributed torque along the beam, mx, is included, i.e., mx=–
dT/dx, then the full differential equation reads 

 ECw ⋅
d 4φ
dx4

−GJ ⋅ d
2φ
dx2

= mx  (8) 

Solution 
The characteristic equation to obtain the homogeneous solution for the differential 
equation in Eq. (8) reads 

 γ 4 − GJ
ECw

⋅γ 2 = 0  (9) 
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The roots are 0, 0, √(GJ/ECw), and –√(GJ/ECw). Accordingly, the homogeneous solution 
is 

 φ(x) = C1 ⋅e
GJ ECw ⋅x +C2 ⋅e

− GJ ECw x +C3 ⋅ x +C4  (10) 

which guides the selection of shape functions if an “exact” stiffness matrix with both St. 
Venant and warping torsion is sought.  Another way of expressing the solution is: 

 φ(x) = C1 ⋅sinh GJ ECw ⋅ x( ) +C2 ⋅cosh GJ ECw ⋅ x( ) +C3 ⋅ x +C4  (11) 

where the coefficients, Ci, in Eq. (10) are different from those in Eq. (11). For example, 
the homogeneous solution for a cantilevered beam that is fully fixed at x=0 and subjected 
to a torque, To, at x=L is: 

 φ(x) = 1
GJ ECw

⋅ To
GJ

⋅
tanh GJ ECw ⋅L( ) ⋅ cosh GJ ECw ⋅ x( )−1⎡

⎣
⎤
⎦

−sinh GJ ECw ⋅ x( ) + GJ ECw ⋅ x

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (12) 

From this solution the torque carried by St. Venant torsion is computed by: 

 TSt .V .(x) = GJ ⋅
dφ
dx

 (13) 

and the torque carried by warping torsion is computed by: 

 Twarping (x) = −ECw ⋅
d 3φ
dx3

 (14) 

where TSt.V.(x)+Twarping(x)=To for all 0<x<L. 

Bi-moment 
In the theory of warping torsion the “bi-moment,” B, is defined as an auxiliary quantity. 
This has two primary objectives. The first is to introduce a “degree of freedom” for beam 
elements that carry torque by restrained warping. The other objective stems from our 
desire to formulate a theory with a quantity that is tantamount to the ordinary bending 
moment in beam theory. In other words, the objective is to establish an equation of the 
form B=ECwφ’’, which is analogous to the equation M=EIw’’from beam theory. To this 
end, let the bi-moment for I-sections be defined by  

 B ≡ M ⋅h  (15) 
where M is again the bending moment in the flange about its strong axis. Substitution of 
the relationship between bending moment in the flange, w, and the flange displacement, 
w, from Euler-Bernoulli beam theory yields 

 B = EI ⋅ d
2w
dx2

⋅h  (16) 

and substitution of the relationship between w and φ from Eq. (4) yields 

 B = −EI ⋅ d
2φ
dx2

⋅ h
2

2
 (17) 
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which in light of Eq. (6) is written 

 B = −ECw ⋅
d 2φ
dx2

 (18) 

This is the desired result, which shows that Eq. (15) is the appropriate definition of the bi-
moment for I-sections. It is emphasized that the bi-moment in itself is not measurable, but 
it serves as a convenient auxiliary quantity in the theory of warping torsion. When 
warping degrees of freedom are included in beam elements then the bi-moment in the 
force vector corresponds to the derivative of the rotation, i.e., φ’, in the displacement 
vector. 

Unified Bending and Torsion of Thin-walled Cross-
sections 
The following theory, named after Vlasov, is developed for warping torsion of thin-
walled cross-sections. Because warping torsion and beam bending are both formulated in 
terms of axial stresses it is possible to combine the two theories. In fact, the omission of 
shear deformation in Euler-Bernoulli beam theory is carried over to the warping theory 
that is presented in the following. It is noted that no theory of warping for general “thick-
walled” cross-sections is currently provided in these documents. Although this is a 
shortcoming, the presented theory is sufficient for many practical applications. This is 
because many thick-walled cross-section types are difficult to fully restrain axially. In 
contrast, it is easier to imagine connection designs for thin-walled cross-sections that 
provide sufficient axial restraint to develop torque due to axial stresses.  

 
Figure 2: Beam axis system and corresponding displacements. 
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Kinematics 
The objective in this section is to establish a relationship between axial strain, εx, and 
axial displacement, u. For this purpose, let the coordinate s follow the centre line of the 
contour of the cross-section and let h denote the distance from the centre of rotation (ysc, 
zsc) to the tangent of the coordinate line s, as shown in Figure 2. The y-z-axes originate in 
the centroid of the cross-section and the shear centre coordinates ysc and zsc are presumed 
to be unknown. The part of the deformation that relates to bending is governed by Euler-
Bernoulli beam theory, hence the shear strain is neglected. However, for closed cross-
sections the shear strain γxs from St. Venant torsion is included. Specifically, γxs is equal 
to the shear strain at r=0 from St. Venant theory, i.e., at the mid-plane of the cross-section 
profile. For open cross-sections this shear strain is zero. As a fundamental kinematics 
postulation it is also assumed that the cross-section retains its shape. This implies that 
σs=εs=0 and that the displacement in the s-direction is: 
  v = −v ⋅cos(α )+w ⋅sin(α )+φ ⋅h  (19) 

where v and w are the displacements of the cross-section and α is the angle between the 
s-axis and the y-axes. The contributions to Eq. (19) are illustrated in Figure 3. This figure 
also shows how sin(α) and cos(α) are expressed in terms of the differentials ds, dy, and 
dz are established, namely: 

 

dy
ds

= −cos(α )

dz
ds

= sin(α )
 (20) 

Substitution of Eq. (20) into Eq. (19) yields: 

 
 
v = v ⋅ dy

ds
+w ⋅ dz

ds
+φ ⋅h  (21) 

which expresses that the cross-section retains its shape during deformation. 

 

 
Figure 3: Contributions to the displacement along the s-axis. 
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Because the boundary value problem at hand relates to axial strains, the following 
equation is the fundamental kinematics equation: 

 ε x =
du
dx

 (22) 

Next, an expression for u is sought, namely the infinitesimal axial displacement, i.e., 
warping, between two infinitesimally close points in the cross-section. To this end, it is 
noted that the shear flow in closed cross-sections due to shear force was determined by 
using the following expressions: 

 γ = du
ds

     ⇒      du = γ ⋅ds  (23) 

It is also recalled that the derivation of du in St. Venant torsion for closed cross-sections 
was determined by including rotation of the cross-section: 

 
 
γ xs =

d v
dx

+ du
ds

     ⇒      du = γ xs ⋅ds −
d v
dx

⋅ds = γ xs ⋅ds −
dφ
dx

⋅h ⋅ds  (24) 

where the last term represents the axial displacement, i.e., warping, due to the rotation, φ. 
The kinematics of Eq. (24) is also utilized in the following, but the expression for  v  
includes all the terms in Eq. (21). Substitution of Eq. (21) into Eq. (24) yields: 

 du = − dv
dx

⋅dy − dw
dx

⋅dz − dφ
dx

⋅h −γ xs
⎛
⎝⎜

⎞
⎠⎟ ⋅ds  (25) 

where it is reiterated that γxs is the shear strain due to St. Venant torsion, which is non-
zero only for closed cross-sections. It is desirable to express γxs in terms of dφ/dx so that 
the latter can be pulled outside the parenthesis. This is achieved by utilizing equations 
from St. Venant theory. First, material law yields 

 γ xs =
τ xs

G
 (26) 

Furthermore, τxs equals ϕ,r where ϕ is Prandtl’s stress function, which is cross-section 
dependent. For thin-walled cross-sections with one cell a good stress function is  

 ϕ(s,r) = K ⋅ 1
2
+ r
t

⎛
⎝⎜

⎞
⎠⎟  (27) 

As a result, the shear stress is  

 τ xs =ϕ,r =
K
t

 (28) 

To express the stress in terms of dφ/dx it is noted that  

 T = GJ dφ
dx

 (29) 
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and that another expression for the torque, T, is available from the stress-resultant 
equation, which for the stress function in Eq. (27) yields 

 T = 2 ⋅ ϕ dA
A
∫ = 2 ⋅K ⋅Am  (30) 

Solving for K in Eq. (30) and substituting it into Eq. (28), followed by substitution of Eq. 
(29) yields: 

 τ xs =
K
t
= T
t ⋅2 ⋅Am

= GJ
2 ⋅ t ⋅Am

⋅ dφ
dx

 (31) 

Substitution of Eq. (31) into Eq. (25) yields 

 du = − dv
dx

⋅dy − dw
dx

⋅dz − dφ
dx

⋅ h − J
2 ⋅ t ⋅Am

⎛
⎝⎜

⎞
⎠⎟
⋅ds  (32) 

The u-displacement at any point in the cross-section is obtained by summing the 
infinitesimal contributions in Eq. (32). In other words, integration along the y, z, and s 
directions yields the complete expression for axial displacement at a point in the cross-
section: 

 u(y, z) = uo −
dv
dx

⋅ y − dw
dx

⋅ z − dφ
dx

⋅Ω  (33) 

where uo is the integration constant, i.e., the axial displacement at the neutral axis, and Ω 
has been defined as: 

 Ω ≡ h − J
2 ⋅ t ⋅Am

⎛
⎝⎜

⎞
⎠⎟
ds∫  (34) 

where it is reemphasized that this expression is valid for cross-sections with one cell. The 
last term in the integrand is called the “shear radius:” 

 h = J
2 ⋅ t ⋅Am

 (35) 

which leads to the short-hand notation: 

 Ω ≡ h − h( )ds∫  (36) 

For open cross-sections the shear strain in the mid-plane of the cross-section profile is 
zero, which implies that 

 Ω ≡ hds∫  (37) 

Finally, combining Eq. (22) and Eq. (33) yields the final kinematics equation: 

 ε x =
du
dx

− d
2v
dx2

⋅ y − d
2w
dx2

⋅ z − d
2φ
dx2

⋅Ω  (38) 

where uo has been renamed to u to match the typical notation for truss members.  
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Material Law 
Hooke’s law provides the relationship between axial stress and axial strain: 
 σ x = E ⋅ ε x  (39) 

Section Integration 
Integration of axial stress over the cross-section yields the axial force: 

 N = σ x dA
A
∫  (40) 

Integration of axial stress multiplied by distance from the centroid yields bending 
moment: 

 Mz = − σ x ⋅ ydA
A
∫  (41) 

Integration of axial stress multiplied by distance from the centroid yields bending 
moment: 

 My = − σ x ⋅ zdA
A
∫  (42) 

Integration of axial stress multiplied by the previously defined quantity Ω is defined as 
the “bi-moment:” 

 B ≡ − σ x ⋅ΩdA
A
∫  (43) 

Equilibrium 
Distributed axial load along the beam is related to the axial force by the following 
equilibrium equation: 

 qx = −
dN
dx

 (44) 

Distributed load in z-direction, which is assumed to act through the shear centre or it will 
contribute to mx, is related to the shear force by the following equilibrium equation: 

 
qz = −

dVz
dx

 (45) 

Equilibrium also provides the relationship between shear force and bending moment: 

 
Vz =

dMy

dx
 (46) 

The corresponding equilibrium equations in the other direction are: 

 
qy =

dVy
dx

 (47) 

and 
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Vy =

dMz

dx
 (48) 

Finally, equilibrium for distributed torque along the beam yields: 

 mx = −
dT
dx

 (49) 

Differential Equations 
Substitution of the kinematics equation in Eq. (38) into the material law in Eq. (39) 
yields: 

 σ x = E ⋅ du
dx

− E ⋅ d
2v
dx2

⋅ y − E ⋅ d
2w
dx2

⋅ z − E ⋅ d
2φ
dx2

⋅Ω  (50) 

Substitution of Eq. (50) into the section integration Eqs. (40) to (43) yields the following 
set of equations (Weberg 1970): 

 

N
Mz

My

B

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

= E ⋅

dA
A
∫ − ydA

A
∫ − zdA

A
∫ − ΩdA

A
∫

− ydA
A
∫ y2 dA

A
∫ y ⋅ zdA

A
∫ y ⋅ΩdA

A
∫

− zdA
A
∫ y ⋅ zdA

A
∫ z2 dA

A
∫ z ⋅ΩdA

A
∫

− ΩdA
A
∫ y ⋅ΩdA

A
∫ z ⋅ΩdA

A
∫ Ω2 dA

A
∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

du
dx
d 2w
dx2

d 2v
dx2

d 2φ
dx2

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪

 (51) 

where symmetry is observed. Under certain condition described shortly, the equations 
become decoupled and reduces to: 

 N = EA ⋅ du
dx

 (52) 

 My = EIy
d 2w
dx2

 (53) 

 Mz = EIz
d 2v
dx2

 (54) 

 B = −ECw
d 2φ
dx2

 (55) 

where the diagonal components of the matrix in Eq. (51) have been named as follows: 

 A = dA
A
∫  (56) 
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 Iz = y2 dA
A
∫  (57) 

 Iy = z2 dA
A
∫  (58) 

 Cw = Ω2 dA
A
∫  (59) 

For the system of equations in Eq. (51) to be decoupled, the six off-diagonal elements of 
the coefficient matrix must be zero. These six conditions form an important part of the 
cross-section analysis. In fact, they determine the following six unknowns of the cross-
section:  

1. yo = y-coordinate of the centroid 
2. zo = z-coordinate of the centroid 
3. θo = orientation of the principal axes 
4. C = normalizing constant for the Ω-diagram 
5. ysc = y-coordinate of the shear centre 
6. zsc = z-coordinate of the shear centre 

Specifically, the coordinates of the centroid of the cross-section are determined by: 

 y dA
A
∫ = z dA

A
∫ = 0  (60) 

The orientation of the principal axes are determined by: 

 y ⋅ z dA
A
∫ = 0  (61) 

The normalizing constant for the Ω-diagram is determined by: 

 Ω dA
A
∫ = 0  (62) 

The shear centre coordinates are determined by: 

 y ⋅Ω dA
A
∫ = z ⋅Ω dA

A
∫ = 0  (63) 

Adding equilibrium with external forces yields the final differential equations for axial 
deformation and bending 

 qx = −EA ⋅
d 2uo
dx2

 (64) 

 qz = EIy
d 4wD

dx4
 (65) 

 qy = EIz
d 4vD
dx4

 (66) 
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The derivation of the differential equation that combines St. Venant torsion and warping 
torsion starts with the definition of the stress resultant: 

 T = τ xs ⋅ t ⋅hdA
A
∫ = qs ⋅hds

A
∫ = qs dΩ

A
∫ = qs ⋅Ω[ ]Γ − Ωdqs

A
∫  (67) 

where qs is the shear flow and the boundary term [qs Ω]Γ from integration by parts is zero. 
Because shear strains are omitted from the warping theory it is necessary to employ 
equilibrium to recover the shear flow. With reference to Figure 4, equilibrium yields: 

 dσ x ⋅ds ⋅ t + dτ xs ⋅dx ⋅ t = 0   ⇒    dσ x

dx
⋅ t + dτ xs

ds
⋅ t = 0   ⇒    dqs

ds
= − dσ x

dx
⋅ t  (68) 

 
Figure 4: Equilibrium to recover shear stresses. 

 

Substitution of Eq. (68) into Eq. (67) yields: 

 T = − Ωdqs
A
∫ = Ω⋅ dσ x

dx
⋅ t ds

A
∫ = Ω⋅ dσ x

dx
dA

A
∫ = d

dx
Ω⋅σ x dA

A
∫ = − dB

dx
 (69) 

Adding the torque carried by shear stresses, i.e., T=GJ(dφ/dx) and employing Eq. (55) 
yields: 

 T = GJ ⋅
dφ
dx

− ECw
d 3φ
dx3

 (70) 

Adding equilibrium with distributed torque from Eq. (49) yields the complete differential 
equation for St. Venant torsion and warping torsion: 

 mx = ECw
d 4φ
dx4

−GJ ⋅
d 2φ
dx2

 (71) 

The solution to this differential equation was presented in Eq. (10).  

! x + d! x

! x

dx

ds

! xs + d! xs

! xs

x

s

t
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Modified Theory for Closed Cross-sections 
The theory presented above is now modified with a new expression u, i.e., with a new 
formulation of the warping (Hals 1993). The focus remains on thin-walled cross-sections, 
and the correction is particularly aimed at improving the results for closed cross-sections. 
A key characteristic of the modified theory is that both shear and axial stresses are 
considered in the same boundary value problem. This is new, because only axial strains 
and stresses are considered in Euler-Bernoulli beam theory and the warping theory above. 
Conversely, the St. Venant warping theory is formulated in terms of shear stresses. Figure 
5 is included to emphasize the combined boundary value problem that is now considered.  

 
Figure 5: Combined BVP for warping torsion considering both shear and axial strains. 

The key modification in this theory is a revision of Eq. (33), while Eq. (19) is maintained. 
The warping due to rotation of the cross-section is now written 

 u(y, z) = −F(x) ⋅Ω  (72) 

instead of 

 u(y, z) = − dφ
dx

⋅Ω  (73) 

The function F(x) is so far unknown and generally different from φ’.  

Boundary Value Problem for Shear  
Kinematic considerations yield the shear strain: 

 γ xs =
d v
dx

+ du
ds

= dφ
dx

⋅h − F ⋅ dΩ
ds

 (74) 

Material law added to the kinematics equation yields: 

 τ xs = G ⋅ dφ
dx

⋅h − F ⋅ dΩ
ds

⎛
⎝⎜

⎞
⎠⎟  (75) 

Section integration of shear stresses around the cell yields the total torque: 

γxs τxs 

ϕ mx 

εx σx 

ϕ mx 

Modi%ied'warping'theory'
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T = τ xs ⋅ t ⋅h ⋅ds∫ = G ⋅ dφ
dx

⋅h − F ⋅ dΩ
ds

⎛
⎝⎜

⎞
⎠⎟ ⋅ t ⋅h ⋅ds∫

= G ⋅ dφ
dx

⋅ t ⋅h2 ⋅ds∫ −G ⋅F ⋅ dΩ
ds

⋅ t ⋅h ⋅ds∫
 (76) 

This equation can be simplified. First, the following definition is made: 

 
 
Jh = t ⋅h2 ⋅ds∫ = h2 ⋅dA

A
∫  (77) 

Second, in accordance with Eq. (36) it is recognized that 

 dΩ
ds

= h − h( )  (78) 

This means that Eq. (76) takes the form 

 
 
T = G ⋅ dφ

dx
⋅ Jh −G ⋅F ⋅ h2 ⋅ t ⋅ds∫ +G ⋅F ⋅ h ⋅h ⋅ t ⋅ds∫  (79) 

Interestingly, the last term can be rewritten in terms of the cross-sectional constant for St. 
Venant warping. Introducing Eq. (35) yields: 

 

 

h ⋅h ⋅ t ⋅ds∫ = h ⋅ J
2 ⋅ t ⋅Am

⎛
⎝⎜

⎞
⎠⎟
⋅ t ⋅ds∫ = J

2 ⋅Am
⋅ h ⋅ds∫

2⋅Am


= J  (80) 

Thus, Eq. (79) turns into: 

 T = G ⋅ Jh ⋅
dφ
dx

−G ⋅F ⋅(Jh − J )  (81) 

If the cross-section has protruding flanges then those are added according to the basic St. 
Venant formula T=GJφ’: 

 T = G ⋅ dφ
dx

⋅(Jh + J flanges )−G ⋅F ⋅(Jh − J )   (82) 

Finally, after having employed kinematics, material law, and section integration, 
equilibrium with applied distributed torque is added in accordance with Eq. (49), which 
substituted into Eq.  (82) yields the differential equation: 

 G ⋅(Jh + J flanges ) ⋅
d 2φ
dx2

−G ⋅(Jh − J ) ⋅
dF
dx

= −mx  (83) 

Boundary Value Problem for Axial  
Kinematic considerations without bending and truss action yield the axial strain: 

 ε x = − dF
dx

⋅Ω  (84) 

Material law added to the kinematic equation yields: 
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 σ x = −E ⋅ dF
dx

⋅Ω  (85) 

Point-wise equilibrium in solid mechanics is expressed in index notation as σij,i+pj=0. 
This leads to the following equilibrium equation for points on the cross-section contour: 

 t ⋅σ x,x + t ⋅τ xs,s + px = 0  (86) 

where px is the force-intensity in the x-direction at that point. Only the weak form of this 
equilibrium equation is employed in this theory. For this purpose, Eq. (86) is weighted 
and integrated over the cross-section: 

 

t ⋅σ x,x + t ⋅τ xs,s + px( ) ⋅Ω(s) ⋅ds∫ = σ x,x ⋅Ω(s) ⋅ t ⋅ds∫
+ τ xs,s ⋅Ω(s) ⋅ t ⋅ds∫
+ px ⋅Ω(s) ⋅ds∫
= 0

 (87) 

where the weight function is the cross-sectional warping, represented by Ω. Each of the 
three terms in Eq. (87) is further developed in the following. The first term is modified by 
substitution of Eq. (85): 

 σ x,x ⋅Ω ⋅ t ⋅ds∫ = −E ⋅ d
2F
dx2

⋅ ⋅Ω2 ⋅ t ⋅ds∫ = −ECw ⋅
d 2F
dx2

 (88) 

The second term in Eq. (87) is rewritten by integration by parts: 

 dτ xs

ds
⋅ t ⋅Ω(s) ⋅ds∫ = τ xs ⋅ t ⋅Ω(s)[ ]− τ xs ⋅

dΩ(s)
ds

⋅ t ⋅ds∫  (89) 

where the boundary term cancels. Eq. (89) is further rewritten by substitution of Eq. (78): 

 τ xs ⋅
dΩ(s)
ds

⋅ t ⋅ds∫ = τ xs ⋅(h − h ) ⋅ t ⋅ds∫  (90) 

This is expanded by substitution of Eq. (75): 

 τ xs ⋅(h − h ) ⋅ t ⋅ds∫ = G ⋅φ '⋅ (h2 − hh ) ⋅ t ⋅ds∫ −G ⋅F ⋅ (h − h )2 ⋅ t ⋅ds∫  (91) 

Introducing cross-section constants that are defined earlier, including the result from Eq. 
(80), yields: 

 
G ⋅φ '⋅ (h2 − hh ) ⋅ t ⋅ds∫ −G ⋅F ⋅ (h − h )2 ⋅ t ⋅ds∫
= G ⋅φ '⋅ Jh − J( )−G ⋅F ⋅ Jh − 2 ⋅ J + h 2 ⋅ t ⋅ds∫( )  (92) 

This can be further simplified because Bredt’s formula from St. Venant torsion yields 

 h 2 ⋅ t ⋅ds∫ = J
2 ⋅ t ⋅Am

⎛
⎝⎜

⎞
⎠⎟

2

⋅ t ⋅ds∫ = J 2 ⋅

1
t
ds∫

4 ⋅Am
2 = J  (93) 



Terje Haukaas University of British Columbia www.inrisk.ubc.ca 

Warping Torsion  Page 15 

The third term in Eq. (87) defines the “warping load” on the cross-section: 

 mΩ = px ⋅Ω(s) ⋅ds∫  (94) 

In summary, Eq. (87) is written as the following differential equation: 

 −ECw ⋅F ''−G ⋅ Jh − J( ) ⋅φ '+G ⋅ Jh − J( ) ⋅F +mΩ = 0  (95) 

Combined Differential Equation 
The differential equation for the shear-BVP in Eq. (83) and the differential equation for 
the axial-BVP in Eq. (95) are now combined. First Eq. (83) is solved for F’: 

 F ' = Jh
(Jh − J )

+
J flanges
(Jh − J )

⎛
⎝⎜

⎞
⎠⎟
⋅φ ''+ mx

G ⋅(Jh − J )
 (96) 

By differentiating twice, this equation is also employed to obtain an expression for F’’’: 

 F ''' = Jh
(Jh − J )

+
J flanges
(Jh − J )

⎛
⎝⎜

⎞
⎠⎟
⋅φ ''''+ mx ''

G ⋅(Jh − J )
 (97) 

The next step is to differentiate Eq. (95) once with respect to x and applying a minus-sign 
to it: 

 ECw ⋅F '''+G ⋅ Jh − J( ) ⋅φ ''−G ⋅ Jh − J( ) ⋅F '−mΩ ' = 0  (98) 

Substitution of Eqs. (96) and (97) into Eq. (98) yields 

 

ECw ⋅
Jh

(Jh − J )
+
J flanges
(Jh − J )

⎛
⎝⎜

⎞
⎠⎟
⋅φ ''''+ mx ''

G ⋅(Jh − J )
⎛

⎝⎜
⎞

⎠⎟

+G ⋅ Jh − J( ) ⋅φ ''−G ⋅ Jh − J( ) ⋅ Jh
(Jh − J )

+
J flanges
(Jh − J )

⎛
⎝⎜

⎞
⎠⎟
⋅φ ''+ mx

G ⋅(Jh − J )
⎛

⎝⎜
⎞

⎠⎟

−mΩ ' = 0

 (99) 

By re-arranging and defining the following auxiliary constants: 

 α o =
Jh

Jh − J
 (100) 

 βo =
J flanges
Jh

 (101) 

 κ o =
J flanges
J

 (102) 

the following complete differential equation that contains both the axial-BVP and the 
shear-BVP (Hals 1993) is obtained: 

 ECw ⋅α o 1+ βo( ) ⋅φ ''''−GJ ⋅ 1+κ o( ) ⋅φ '' = mΩ '+mx −
ECw

GJh
⋅α o ⋅mx ''  (103) 
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Problems without free flanges are characterized by βo=κo=0 and the homogeneous 
differential equation for such problems is: 

 ECw ⋅α o ⋅φ ''''−GJ ⋅φ '' = 0  (104) 

which has the general solution: 

 φ = C1 +C2 ⋅ x +C3 ⋅e
kox −C4 ⋅e

−kox  (105) 

where 

 ko =
GJ

ECwα o

 (106) 

Once a solution to the differential equation is obtained, the unknown function F(x) can be 
determined. Solving Eq. (95) yields 

 F = − mΩ

G ⋅ Jh − J( ) +
ECw ⋅F ''
G ⋅ Jh − J( ) +φ '  (107) 

and substituting F’’ from Eq. (96) differentiated once yields, when there are no free 
flanges: 

 F = − mΩ

GJh
⋅α o +

ECw ⋅α o
2

GJh
⋅φ '''+ ECwα o

GJh
⋅ mx '
GJh

⋅α o +φ '  (108) 

This expression reveals the warping of the cross-section, but it is not needed to determine 
the bi-moment for axial stress computations. This is understood by first considering the 
definition of the bi-moment, which is: 

 B = − σ x ⋅ΩdA
A
∫  (109) 

Substitution of the expression for axial stress from Eq. (85) yields 

 B = E ⋅ dF
dx

⋅Ω2 dA
A
∫ = ECw ⋅F '  (110) 

Instead of employing Eq. (108) to determine F’, it is possible to substitute F’ from Eq. 
(96), which yields, when there are no free flanges: 

 B = ECw ⋅α o ⋅φ ''+
ECw

GJh
⋅α o ⋅mx  (111) 

The axial stress in the cross-section is obtained by combining Eq. (110) with Eq. (85): 

 σ x = − B
Cw

⋅Ω  (112) 

The total torque is obtained by combining the expression for torque in Eq. (97) with the 
differential equation for shear in Eq. (83) and the differential equation for axial in Eq. 
(95). Substitution of F from Eq. (95) and then F’’ from the differentiated Eq. (83) into 
Eq.  (82) yields: 
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 T = −ECw ⋅α o ⋅φ '''+GJ ⋅φ '−
ECw ⋅α o

GJh
⋅mx '+mΩ   (113) 

The shear stresses are obtained from Eq. (75): 

 τ xs = G ⋅φ '⋅h −G ⋅F ⋅(h − h )  (114) 

where the expression for F from Eq. (108) could conceivably be utilized. However, a 
better way of determining the stress stresses is to solve the statically indeterminate shear 
flow around the cell by enforcing compatibility.  
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