Esame di Fondamenti di Costruzione di Macchine: 09 Settembre 2024.

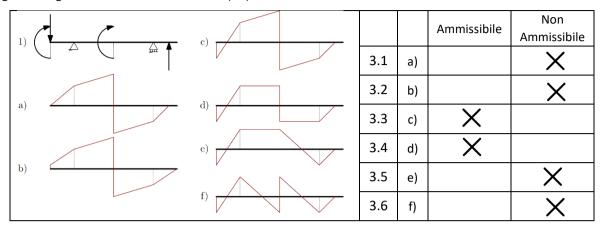
Nome	
Cognome	
Matricola	

Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. <u>Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono corrette.</u> [ogni quesito completamente esatto vale 2 punti]

Quesito 1

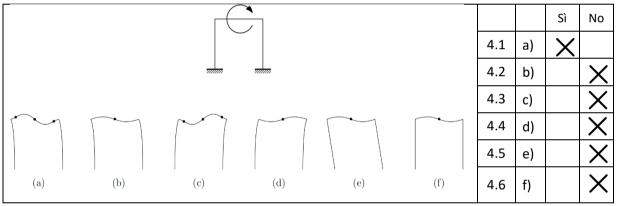
Determinare il valore della coordinata x alla quale è posizionata la risultante delle due forze proposte in figura.

A			Vero	Falso
30 N	1.1	80 mm		X
	1.2	-80 mm	X	
	1.3	16 mm		X
40 mm	1.4	-16 mm		×
$\int_{\mathcal{X}} x = \int_{\mathcal{X}} 20 \text{ N}$	1.5	24 mm		X
o w	1.6	-24 mm		X

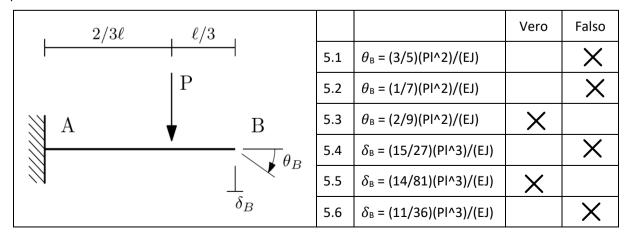

Quesito 2

In un punto di un continuo di materiale in tensione piana, sono note le tensioni riportate in figura. Dette σ_1 e σ_2 le tensioni principali, e θ l'angolo tra il sistema di riferimento corrente ed il sistema di riferimento principale di tensione (positivo se antiorario):

$\sigma = +2.6$				Vero	Falso
$ \tau = 0.81$	2.1	$\sigma_1 = 2.572$	$\sigma_2 = 3.494$		X
$ \begin{array}{c c} & a \\ d & \stackrel{\frown}{\triangle}^{\theta} & b \end{array} \begin{array}{c} \bullet & \sigma = +3.2 \\ \bullet & \bullet \end{array} $	2.2	$\sigma_1 = 2.037$	$\sigma_2 = 3.764$	X	
♦	2.3	$\sigma_1 = 1.874$	$\sigma_2 = 3.261$		X
	2.4	<i>θ</i> = 28.56°			X
↓	2.5	<i>θ</i> = 25.78°			X
	2.6	θ = 34.84°		X	


Quesito 3

Data la struttura in figura 1, caricata da due forze ed un momento di cui non si conoscono le entità. Stabilire se i seguenti diagrammi del momento flettente (a-f) sono ammissibili:


Quesito 4

Si discuta se le deformate (dalla a alla f) possano essere compatibili con il portale proposto. (i punti neri evidenziano i punti di flesso)

Quesito 5

Si consideri la trave di figura, di momento di inerzia J e di materiale avente modulo elastico E. Si calcoli lo spostamento δB e la rotazione θB all'estremo libero della trave.

