Esame di Fondamenti di Costruzione di Macchine: 16 Luglio 2024.

Nome		
Cognome		
Matricola		

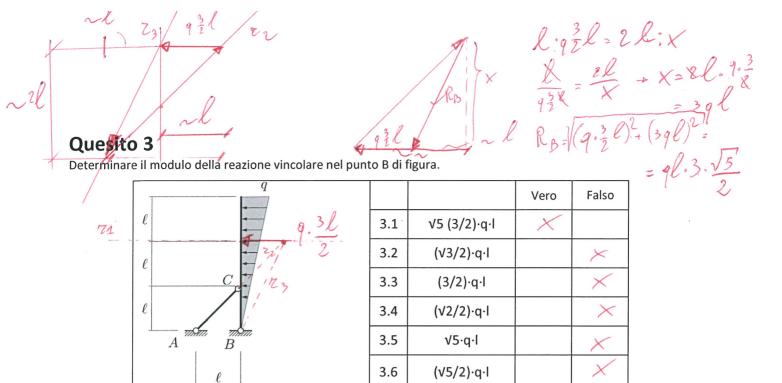
Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono

Corrette. [ogni quesito completamente esatto vale 2 punti]

Quesito 1 $T_{II} = \frac{27.40^3}{12}$ mm⁴ = 144.000 mm⁴; $T_{O} = 17.40$ mm⁴ = 1853.98 mm⁴; $W_{DI} = \frac{50-5}{70} = 6807.50$ mm

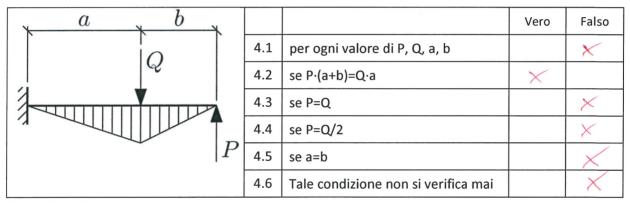
Considerando l'immagine (quote in mm), calcolare il modulo di resistenza della sezione rispetto all'asse x-x.

Turing I mindgine (quote ii min), carediare ii modalo di resistenza della sezione rispetto di disse x x					
	 			Vero	Falso
		1.1	7003.65 mm ³		X
1	R 10 x x x	1.2	6807.30 mm ³	×	
10 40		1.3	6414.60 mm ³		×
		1.4	6208.12 mm ³		×
		1.5	7235.58 mm ³	¥	X
		1.6	7175.46 mm ³		×


Quesito 2

In un punto di un continuo di materiale in tensione piana, sono note le tensioni nel sistema di riferimento riportato in figura. Dette σ_1 e σ_2 le tensioni principali, e θ l'angolo tra il sistema di riferimento corrente ed il sistema di riferimento principale di tensione (positivo se antiorario):

$\sigma = -3.3$		У		Vero	Falso
$ \tau = 1.65$ $\sigma = -1.8$	2.1	$\sigma_1 = -4.362$	$\sigma_2 = -0.738$	X	
	2.2	$\sigma_1 = -4.362$	$\sigma_2 = 0.738$	2	×
	2.3	$\sigma_1 = 0.738$	$\sigma_2 = 4.362$		×
	2.4	<i>θ</i> = -32.78°		X	
	2.5	θ = -12.16°			X
And a final proof.	2.6	θ = -48.65			X


 $\sigma_{1-2} = \frac{-3.3 - 1.8}{2} = \frac{1}{2} \left(\frac{-3.3 + 1.8}{2} \right)^{2} + 1.65^{2} = -0.738$ -4.362 $101 = \frac{1}{2} \arctan\left(\frac{2 \cdot 1.65}{-3.3 + 1.8} \right) = 32.78^{\circ} \text{ he regno?}$

0=-32.78

Quesito 4

Si consideri il diagramma di momento flettente di figura, dove tale momento si annulla in corrispondenza dell'incastro. Tale condizione si verifica:

Quesito 5

La trave in figura a è caricata da una forza $F_A=1\,N$, nel punto B si misura sperimentalmente una rotazione di $\varphi_B=0.011\,rad$. Nella figura b la stessa trave viene caricata da una coppia $C_B=15\,Nmm$. Calcolare l'intensità dello spostamento δ_A , positivo se verso l'alto.

F _A			Vero	Falso
$a) \sim A$ $B \sim \varphi_B$	5.1	-0.0029 mm		X
1/4 31/4	5.2	0.0029 mm		X
	5.3	-0.0840 mm		\times
$\delta_{ m A}$ Γ	5.4	0.0840 mm		X
b) A B	5.5	-0.1650 mm		X
	5.6	0.1650 mm	X	