
Esame di Fondamenti di Costruzione di Macchine: 16 Luglio 2024.

Nome	
Cognome	
Matricola	

Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. <u>Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono corrette</u>. [ogni quesito completamente esatto vale 2 punti]

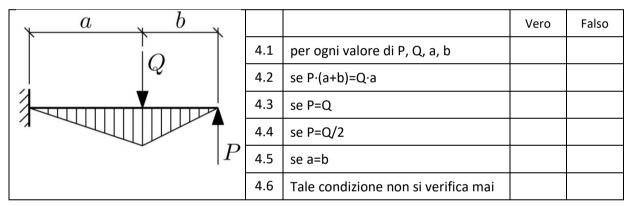
Quesito 1

Considerando l'immagine (quote in mm), calcolare il modulo di resistenza della sezione rispetto all'asse x-x.

Quesito 2

In un punto di un continuo di materiale in tensione piana, sono note le tensioni nel sistema di riferimento riportato in figura. Dette σ_1 e σ_2 le tensioni principali, e θ l'angolo tra il sistema di riferimento corrente ed il sistema di riferimento principale di tensione (positivo se antiorario):

$\sigma = -3.3$			Vero	Falso
$ \tau = 1.65$	2.1	$\sigma_1 = -4.362$ $\sigma_2 = -0.738$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2	$\sigma_1 = -4.362$ $\sigma_2 = 0.738$		
	2.3	$\sigma_1 = 0.738$ $\sigma_2 = 4.362$		
→	2.4	<i>θ</i> = -32.78°		
	2.5	<i>θ</i> = -12.16°		
	2.6	θ = -48.65		


Quesito 3

Determinare il modulo della reazione vincolare nel punto B di figura.

q			Vero	Falso
ℓ :	3.1	√5 (3/2)·q·l		
ℓ	3.2	(√3/2)·q·l		
C	3.3	(3/2)·q·l		
ℓ	3.4	(√2/2)·q·l		
A TOM TOM	3.5	√5·q·l		
ℓ	3.6	(√5/2)·q·l		

Quesito 4

Si consideri il diagramma di momento flettente di figura, dove tale momento si annulla in corrispondenza dell'incastro. Tale condizione si verifica:

Quesito 5

La trave in figura a è caricata da una forza $F_A=1~N$, nel punto B si misura sperimentalmente una rotazione di $\varphi_B=0.011~rad$. Nella figura b la stessa trave viene caricata da una coppia $\mathcal{C}_B=15~Nmm$. Calcolare l'intensità dello spostamento δ_A , positivo se verso l'alto.

$ F_{ m A} $			Vero	Falso
$a)$ \wedge A B φ_{I}	5.1	-0.0029 mm		
l/4 $3l/4$	5.2	0.0029 mm		
	5.3	-0.0840 mm		
$\delta_{ m A}$ Γ Λ Γ Λ Γ Γ	5.4	0.0840 mm		
b) A B	5.5	-0.1650 mm		
	5.6	0.1650 mm		