Esame di Fondamenti di Costruzione di Macchine: 11 gennaio 2024.

Nome	
Cognome	
Matricola	

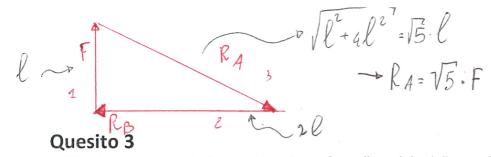
Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono corrette.

Quesito 1

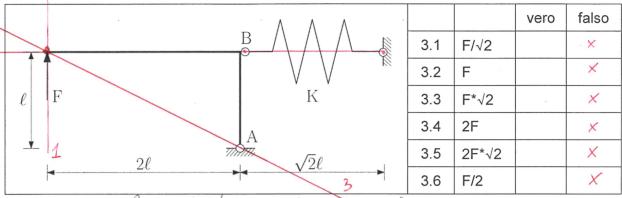
Data la struttura in figura 1, caricata da due forze ed un momento di cui non si conoscono le entità. Stabilire se i seguenti diagrammi del momento flettente (a-f) sono ammissibili:

					ammissibile	non ammissibile
1)	c)	1.1	a)	X		
	d)		1.2	b)	×	Anche questa riposta è stata data per buona, l'immagine era poco chiara
	(1)	")	1.3	c)	×	
a)	e)	e)	1.4	d)		×
			1.5	e)	X	
b)	f)	0	1.6	f)		×

Quesito 2


In un punto di un continuo di titanio (E=110000 MPa, nu=0.3), si conoscono i valori principali ϵ_1 =0.006, ϵ_2 =0.018, σ_3 =0 (tensione piana). Determinare il valore delle tensioni principali.

	ϵ_1 -0.000, ϵ_2
P.82.	Δ
$\mathcal{E}_{X} = \frac{1}{E} [\sigma_{X} - 1]$	7 (oy+1/2)]
Eg = { Eloy.	$-\sqrt{(\sigma_{x}+\sigma_{z})}$
\\ \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-Voz]
\\\ \(\epsilon = \frac{1}{\epsilon} \[\left[0 \]	2-702]
	_


		Vero	Falso
2.1	σ_1 = 660 MPa; σ_2 = -660 MPa		X
2.2	σ_1 = 660 MPa; σ_2 = 1980 MPa		X
2.3	σ_1 = 660 MPa; σ_2 = -1980 MPa		X
2.4	σ_1 = 1378 MPa; σ_2 = 2393 MPa	X	
2.5	σ_1 = 1378 MPa; σ_2 = -2393 MPa		X
2.6	$\sigma_1 = 1791 \text{ MPa}; \ \sigma_2 = 3111 \text{ MPa}$		X

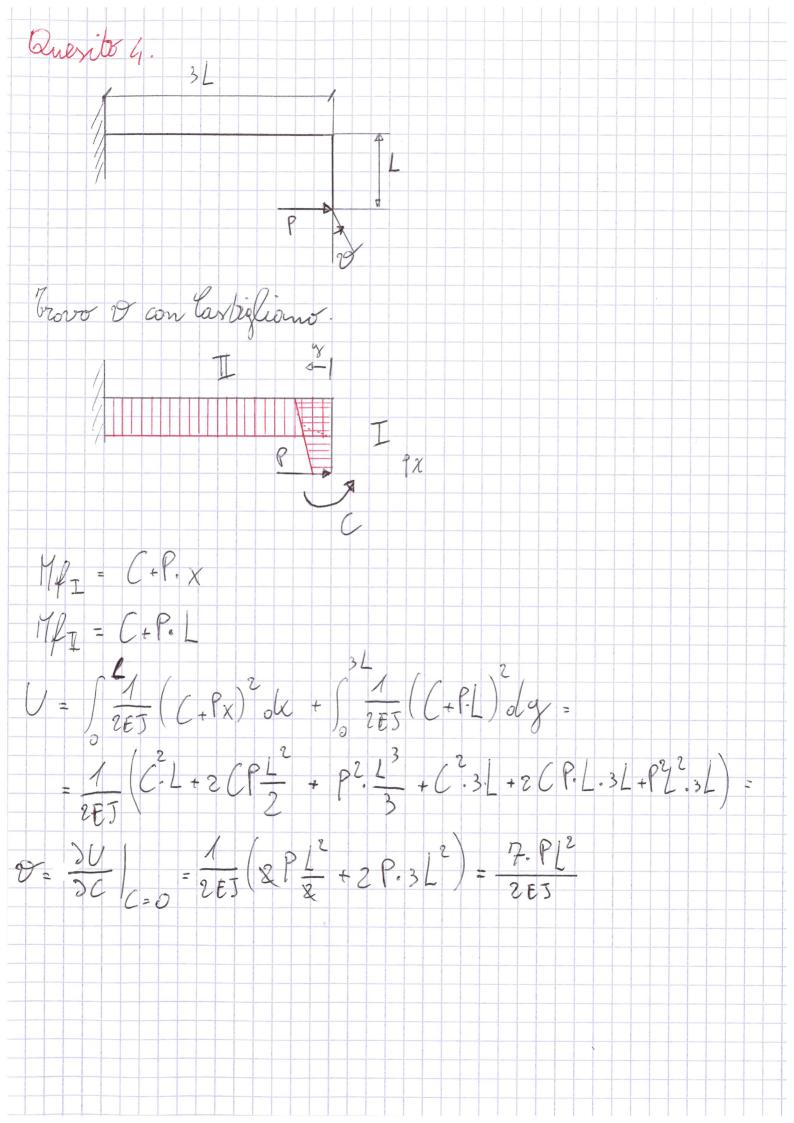
$$\mathcal{O}_{1} = \frac{E}{1 - V^{2}} (E_{1} + V E_{2}) = 1378.0 \text{ HPa}$$

$$\mathcal{O}_{2} = \frac{E}{1 - V^{2}} (E_{2} + V E_{1}) = 2393.4 \text{ HPa}$$

Determinare utilizzando il metodo delle tre forze il modulo della reazione vincolare nel punto A di figura.

Quesito 4 svolgimento di sequito, seltima facciota.

Si consideri la trave in figura, di cui si conosce proprietà del materiale e geometria della


sezione. Si indichi se le seguenti affermazioni sono vere o false.

3L			Vero	Falso
	4.1	$\theta = (5PL^2)/(2EJ)$		X
	4.2	θ=(11PL ²)/(2EJ)		×
$P \qquad \qquad \downarrow L$	4.3	$\theta = (7PL^2)/(2EJ)$	X	
	4.4	$\theta = (PL^2)/(2EJ)$		X
θ	4.5	$\theta = (3PL^2)/(2EJ)$		X
	4.6	θ=(9PL ²)/(2EJ)		X

Quesito 5

Si consideri la trave di figura a), caricata da una coppia C=300 Nmm, che impartisce un cedimento δ = 0.0558 mm. Si considera poi la stessa trave in figura b), caricata da una forza trasversale P e per cui è misurata una rotazione θ =0.0339 rad. Si calcoli con il teorema di Betti l'intensità della forza P.

-				vero	falso
a) $\frac{\delta}{\delta}$		5.1	P = 493.81 N		X
	-	5.2	P = 415.92 N		×
	P	5.3	P = 338.03 N		X
b) }		5.4	P = 260.14 N		X
	;	5.5	P = 182,25 N	X	
θ 1	;	5.6	P = 104.36N		X

