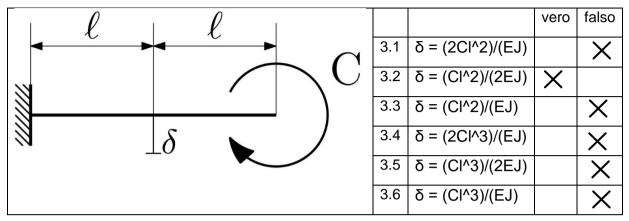

Esame di Fondamenti di Costruzione di Macchine: 3 luglio 2023.

Nome	
Cognome	
Matricola	

Si risponda ai seguenti quesiti. Riportare le risposte compilando le tabelle in calce alle singole domande e riportare poi le stesse risposte nella tabella in carta copiativa. Si Ricorda che risposte sbagliate o lasciate in bianco danno lo stesso punteggio nullo. Il quesito viene considerato corretto solo e soltanto se tutte le singole voci (x.1-x.6) sono corrette.

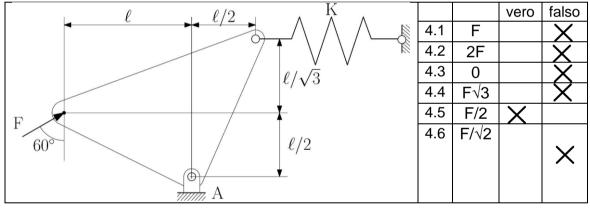
Quesito 1

Indicare se per le strutture riportate nelle figure da (a) a (f) risulta ammissibile o meno il diagramma di momento flettente qualitativo riportato in figura (1).


Quesito 2

Si consideri una trave a sezione quadrata in parete sottile avente spessore di parete t e lato d (misurato alla linea media), soggetto a momento torcente Mt. Il materiale della trave ha modulo di taglio G. La tensione massima prodotta vale tau.

		Vero	Falso
2.1	Se raddoppia <i>t</i> , <i>tau</i> raddoppia		X
2.2	Se raddoppia <i>d</i> , <i>tau</i> raddoppia		X
2.3	Se raddoppia <i>Mt</i> , <i>tau</i> raddoppia	X	
2.4	Se raddoppia <i>G</i> , <i>tau</i> raddoppia		X
2.5	Se raddoppia <i>t</i> , <i>tau</i> non varia		X
2.6	Se raddoppia <i>G</i> , <i>tau</i> non varia	X	


Quesito 3

Si consideri la trave di figura, di momento di inerzia J e di materiale avente modulo elastico E. Si calcoli lo spostamento δ in mezzeria.

Quesito 4

Considerare la struttura di figura caricata da una forza esterna F. Determinare utilizzando il metodo delle tre forze il modulo della reazione vincolare nel punto A.

Quesito 5

In un punto di un continuo di alluminio (E=70000 MPa, G=28000 MPa, nu=0.25), si conoscono le componenti di deformazione $\epsilon x=\epsilon y=0$, $\gamma xy=0.0026$, $\sigma_3=0$ (stato piano di tensione). Determinare il valore delle tensioni principali.

		vero	falso
5.1	σ_1 = 194.13 MPa; σ_2 = 0 MPa		X
5.2	σ_1 = 182.0 MPa; σ_2 = 182.0 MPa		X
5.3	σ_1 = 182.0 MPa; σ_2 =-182.0 MPa		X
5.4	σ_1 = 182.0 MPa; σ_2 = 0 MPa		X
5.5	σ_1 = 72.8 MPa; σ_2 = -72.8 MPa	X	
5.6	σ_1 = 72.8 MPa; σ_2 = 0 MPa		X