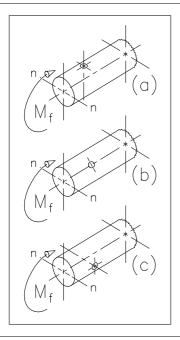

Cognome	Nome	Matricola	X

Scritto di Costruzione di Macchine, 13 febbraio 2020 2 ore di tempo

Si richiede di

- numerare le pagine dei fogli protocollo utilizzati (primo foglio pagine 1,2,3,4; secondo foglio pagine 5,6,7,8 etc.);
- indicare per ogni esercizio le pagine relative allo svolgimento dello stesso;
- riportare ove richiesto i risultati negli appositi spazi, completi di unità di misura.


L'esercizio o gli esercizi che mancheranno di tali indicazioni si riterranno non svolti e quindi non saranno soggetti a correzione.

Si consideri il tubo di Figura facente parte del circuito di raffreddamento di un motore a combustione interna, soggetto alla pressione interna $p_{\rm i}$ ma anche, in seguito agli spostamenti relativi delle sue estremità dovuti a cedimenti ed a vibrazioni, soggetto alle caratteristiche di sollecitazione tipiche di una trave. Discutere a quali cause (pressione interna, flessione, torsione, sforzo normale) sono imputabili i tre tipi di fratture a, b, c, presentati in Figura.

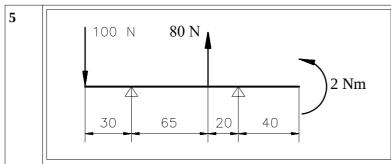
frattura tipo a:
frattura tipo b:
frattura tipo c:
svolto a p

2

Si consideri l'albero rotante soggetto ad un momento flettente M_f fisso nello spazio, di Figura. L'albero presenta un foro trasversale passante. Per quale posizione angolare dell'albero, (a), (b), o (c), il foro passante produce il peggiore effetto intaglio? Motivare.

posizione angolare di massimo effetto intaglio:

svolto a p.


Si consideri un forzamento albero-manicotto. Il diametro dell'albero è di 30 mm, ed il diametro esterno del manicotto è di 60 mm, e la sua lunghezza assiale è di 120 mm. Supponendo l'albero ed il manicotto in C40, determinare l'interferenza radiale per cui, nei limiti della soluzione piana, si abbia un coefficiente di sicurezza di 3 rispetto all'inizio plasticizzazione.

interferenza radiale: svolto a p.

 $\left(\frac{60}{280} + \frac{10}{360} \right)^2 + \left(\frac{35}{160} + \frac{17}{220} \right)^2 = \frac{1}{n^2}$

Nella verifica a resistenza di una sezione di un componente meccanico realizzato in C40 , è stata impiegata la formula a fianco. Indicare sul quadrato elementare le tensioni agenti ed il loro presunto ciclo di fatica.

svolto a p.

Sia dato l'albero rotante di Figura, con i carichi indicati, non rotanti, e le dimensioni assiali in mm dell'albero. Tracciare il momento flettente quantitativo lungo l'albero. Supponendo poi l'albero realizzato in C30 , determinarne il diametro (supposto costante) tale che garantisca, con coefficiente di sicurezza 2, una vita infinita a fatica.

Momento flettente (positivo se a fibre tese inferiori):			
estremo sinistro (e.sx)):		
30 mm da e.sx:			
95 mm da e.sx:			
115 mm da e.sx:			
estremo destro:			
diametro:			
	svolto a p		

forcella spinotto

(a) P (b) (c)

forcella spinotto gioco

modrevite gioco

modrevite gioco

(e)

Si considerino i tre contatti (a), (b), (c) con gioco iniziale nullo, ed i tre contatti (d), (e), (f) con gioco iniziale <u>non</u> nullo, che viene almeno parzialmente recuperato in seguito al caricamento. Esaminare quali contatti sono progressivi, stazionari, e recessivi.

caso (a):	
caso (b):	
caso (c):	
caso (d):	
caso (e):	
caso (f):	
	svolto a p

- Dimensionare lo spessore assiale di un piede di biella realizzata in 40NiCrMo7, di diametro interno 20 mm e diametro esterno 28 mm, soggetto ad un carico trattivo di 12000 N al PMS in fase di incrocio e ad un carico compressivo di 20500 N in condizione di avviamento. Calcolare in particolare:
 - lo spessore assiale b_1 che garantisce un coefficiente di sicurezza 3 a vita infinita, e

(f)

• lo spessore assiale b_2 che garantisce una pressione di contatto con lo spinotto pari al valore ammissibile di 45 MPa.

spessore assiale b_1 : spessore assiale b_2 :

(d)

svolto a p.